TurboRVB: A many-body toolkit for ab initio electronic simulations by quantum Monte Carlo
TurboRVB is a computational package for ab initio Quantum Monte Carlo (QMC) simulations of both molecular and bulk electronic systems. The code implements two types of well established QMC algorithms: Variational Monte Carlo (VMC) and diffusion Monte Carlo in its robust and efficient lattice regular...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2020-05, Vol.152 (20), p.204121-204121 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 204121 |
---|---|
container_issue | 20 |
container_start_page | 204121 |
container_title | The Journal of chemical physics |
container_volume | 152 |
creator | Nakano, Kousuke Attaccalite, Claudio Barborini, Matteo Capriotti, Luca Casula, Michele Coccia, Emanuele Dagrada, Mario Genovese, Claudio Luo, Ye Mazzola, Guglielmo Zen, Andrea Sorella, Sandro |
description | TurboRVB is a computational package for ab initio Quantum Monte Carlo (QMC) simulations of both molecular and bulk electronic systems. The code implements two types of well established QMC algorithms: Variational Monte Carlo (VMC) and diffusion Monte Carlo in its robust and efficient lattice regularized variant. A key feature of the code is the possibility of using strongly correlated many-body wave functions (WFs), capable of describing several materials with very high accuracy, even when standard mean-field approaches [e.g., density functional theory (DFT)] fail. The electronic WF is obtained by applying a Jastrow factor, which takes into account dynamical correlations, to the most general mean-field ground state, written either as an antisymmetrized geminal power with spin-singlet pairing or as a Pfaffian, including both singlet and triplet correlations. This WF can be viewed as an efficient implementation of the so-called resonating valence bond (RVB) Ansatz, first proposed by Pauling and Anderson in quantum chemistry [L. Pauling, The Nature of the Chemical Bond (Cornell University Press, 1960)] and condensed matter physics [P.W. Anderson, Mat. Res. Bull 8, 153 (1973)], respectively. The RVB Ansatz implemented in TurboRVB has a large variational freedom, including the Jastrow correlated Slater determinant as its simplest, but nontrivial case. Moreover, it has the remarkable advantage of remaining with an affordable computational cost, proportional to the one spent for the evaluation of a single Slater determinant. Therefore, its application to large systems is computationally feasible. The WF is expanded in a localized basis set. Several basis set functions are implemented, such as Gaussian, Slater, and mixed types, with no restriction on the choice of their contraction. The code implements the adjoint algorithmic differentiation that enables a very efficient evaluation of energy derivatives, comprising the ionic forces. Thus, one can perform structural optimizations and molecular dynamics in the canonical NVT ensemble at the VMC level. For the electronic part, a full WF optimization (Jastrow and antisymmetric parts together) is made possible, thanks to state-of-the-art stochastic algorithms for energy minimization. In the optimization procedure, the first guess can be obtained at the mean-field level by a built-in DFT driver. The code has been efficiently parallelized by using a hybrid MPI-OpenMP protocol, which is also an ideal environment for exploi |
doi_str_mv | 10.1063/5.0005037 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2409188612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407665071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-98fe7c296f6e9661cd02faf25470b55f021140f1b35ba1a4ad327b28b7a5e8783</originalsourceid><addsrcrecordid>eNp90VFrHCEQB3ApDfSa9KHfQJKXtrDp6K6627fr0TSBC4WSFvok6ikx2dVE3cJ9-3q50EAe8jQw_HD-4yD0nsApAd5-ZqcAwKAVr9CCQD80gg_wGi0AKGkGDvwNepvzTUVE0G6B_lzNScefv79-wUs8qbBtdNxscYlxvPUFu5iw0tgHX3zEdrSmpBi8wdlP86hqM2Sst_h-VqHME76MoVi8UmmMR-jAqTHbd4_1EP06-3a1Om_WP75frJbrxnS9KM3QOysMHbjjduCcmA1QpxxlnQDNmKu5SQeO6JZpRVSnNi0VmvZaKGZ70beH6Hj_bszFy2x8sebaxBBqVkk4B8ZYRR_36FqN8i75SaWtjMrL8-Va7npARdsSIf6Saj_s7V2K97PNRU4-GzuOKtg4Z0k7GEjfc0IrPXlGb-KcQl13pwTnDAR5Gm5SzDlZ9z8BAbm7mmTy8WrVftrb3SIP__sC_gcfIJOo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407665071</pqid></control><display><type>article</type><title>TurboRVB: A many-body toolkit for ab initio electronic simulations by quantum Monte Carlo</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Nakano, Kousuke ; Attaccalite, Claudio ; Barborini, Matteo ; Capriotti, Luca ; Casula, Michele ; Coccia, Emanuele ; Dagrada, Mario ; Genovese, Claudio ; Luo, Ye ; Mazzola, Guglielmo ; Zen, Andrea ; Sorella, Sandro</creator><creatorcontrib>Nakano, Kousuke ; Attaccalite, Claudio ; Barborini, Matteo ; Capriotti, Luca ; Casula, Michele ; Coccia, Emanuele ; Dagrada, Mario ; Genovese, Claudio ; Luo, Ye ; Mazzola, Guglielmo ; Zen, Andrea ; Sorella, Sandro ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>TurboRVB is a computational package for ab initio Quantum Monte Carlo (QMC) simulations of both molecular and bulk electronic systems. The code implements two types of well established QMC algorithms: Variational Monte Carlo (VMC) and diffusion Monte Carlo in its robust and efficient lattice regularized variant. A key feature of the code is the possibility of using strongly correlated many-body wave functions (WFs), capable of describing several materials with very high accuracy, even when standard mean-field approaches [e.g., density functional theory (DFT)] fail. The electronic WF is obtained by applying a Jastrow factor, which takes into account dynamical correlations, to the most general mean-field ground state, written either as an antisymmetrized geminal power with spin-singlet pairing or as a Pfaffian, including both singlet and triplet correlations. This WF can be viewed as an efficient implementation of the so-called resonating valence bond (RVB) Ansatz, first proposed by Pauling and Anderson in quantum chemistry [L. Pauling, The Nature of the Chemical Bond (Cornell University Press, 1960)] and condensed matter physics [P.W. Anderson, Mat. Res. Bull 8, 153 (1973)], respectively. The RVB Ansatz implemented in TurboRVB has a large variational freedom, including the Jastrow correlated Slater determinant as its simplest, but nontrivial case. Moreover, it has the remarkable advantage of remaining with an affordable computational cost, proportional to the one spent for the evaluation of a single Slater determinant. Therefore, its application to large systems is computationally feasible. The WF is expanded in a localized basis set. Several basis set functions are implemented, such as Gaussian, Slater, and mixed types, with no restriction on the choice of their contraction. The code implements the adjoint algorithmic differentiation that enables a very efficient evaluation of energy derivatives, comprising the ionic forces. Thus, one can perform structural optimizations and molecular dynamics in the canonical NVT ensemble at the VMC level. For the electronic part, a full WF optimization (Jastrow and antisymmetric parts together) is made possible, thanks to state-of-the-art stochastic algorithms for energy minimization. In the optimization procedure, the first guess can be obtained at the mean-field level by a built-in DFT driver. The code has been efficiently parallelized by using a hybrid MPI-OpenMP protocol, which is also an ideal environment for exploiting the computational power of modern Graphics Processing Unit accelerators.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0005037</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Accelerators ; Algorithms ; Chemical bonds ; Chemical physics ; Chemical Sciences ; Computer simulation ; Computing costs ; Condensed Matter ; Condensed matter physics ; Correlation ; Density functional theory ; Electron correlation calculations ; Electronic structure ; Electronic systems ; Electronic wave function ; Energy conservation ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Many body problems ; Material chemistry ; Materials Science ; Molecular dynamics ; Monte Carlo methods ; Optimization ; Optimization algorithms ; Parallel processing ; Physics ; Quantum chemistry ; Quantum Physics ; Schrodinger equations ; Stochastic processes ; Strongly Correlated Electrons ; Toolkits ; Wave functions</subject><ispartof>The Journal of chemical physics, 2020-05, Vol.152 (20), p.204121-204121</ispartof><rights>Author(s)</rights><rights>2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-98fe7c296f6e9661cd02faf25470b55f021140f1b35ba1a4ad327b28b7a5e8783</citedby><cites>FETCH-LOGICAL-c487t-98fe7c296f6e9661cd02faf25470b55f021140f1b35ba1a4ad327b28b7a5e8783</cites><orcidid>0000-0001-7756-4355 ; 0000-0002-2968-398X ; 0000-0002-5117-2385 ; 0000-0002-7660-261X ; 0000-0002-2267-284X ; 0000-0001-7798-099X ; 0000-0003-3389-0989 ; 0000-0002-8296-8132 ; 0000-0002-8982-5169 ; 0000-0003-1678-0999 ; 0000-0002-7648-4078 ; 0000000333890989 ; 0000000282968132 ; 0000000289825169 ; 0000000276484078 ; 0000000177564355 ; 000000017798099X ; 0000000251172385 ; 000000022968398X ; 000000022267284X ; 000000027660261X ; 0000000316780999</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0005037$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02733177$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1660555$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakano, Kousuke</creatorcontrib><creatorcontrib>Attaccalite, Claudio</creatorcontrib><creatorcontrib>Barborini, Matteo</creatorcontrib><creatorcontrib>Capriotti, Luca</creatorcontrib><creatorcontrib>Casula, Michele</creatorcontrib><creatorcontrib>Coccia, Emanuele</creatorcontrib><creatorcontrib>Dagrada, Mario</creatorcontrib><creatorcontrib>Genovese, Claudio</creatorcontrib><creatorcontrib>Luo, Ye</creatorcontrib><creatorcontrib>Mazzola, Guglielmo</creatorcontrib><creatorcontrib>Zen, Andrea</creatorcontrib><creatorcontrib>Sorella, Sandro</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>TurboRVB: A many-body toolkit for ab initio electronic simulations by quantum Monte Carlo</title><title>The Journal of chemical physics</title><description>TurboRVB is a computational package for ab initio Quantum Monte Carlo (QMC) simulations of both molecular and bulk electronic systems. The code implements two types of well established QMC algorithms: Variational Monte Carlo (VMC) and diffusion Monte Carlo in its robust and efficient lattice regularized variant. A key feature of the code is the possibility of using strongly correlated many-body wave functions (WFs), capable of describing several materials with very high accuracy, even when standard mean-field approaches [e.g., density functional theory (DFT)] fail. The electronic WF is obtained by applying a Jastrow factor, which takes into account dynamical correlations, to the most general mean-field ground state, written either as an antisymmetrized geminal power with spin-singlet pairing or as a Pfaffian, including both singlet and triplet correlations. This WF can be viewed as an efficient implementation of the so-called resonating valence bond (RVB) Ansatz, first proposed by Pauling and Anderson in quantum chemistry [L. Pauling, The Nature of the Chemical Bond (Cornell University Press, 1960)] and condensed matter physics [P.W. Anderson, Mat. Res. Bull 8, 153 (1973)], respectively. The RVB Ansatz implemented in TurboRVB has a large variational freedom, including the Jastrow correlated Slater determinant as its simplest, but nontrivial case. Moreover, it has the remarkable advantage of remaining with an affordable computational cost, proportional to the one spent for the evaluation of a single Slater determinant. Therefore, its application to large systems is computationally feasible. The WF is expanded in a localized basis set. Several basis set functions are implemented, such as Gaussian, Slater, and mixed types, with no restriction on the choice of their contraction. The code implements the adjoint algorithmic differentiation that enables a very efficient evaluation of energy derivatives, comprising the ionic forces. Thus, one can perform structural optimizations and molecular dynamics in the canonical NVT ensemble at the VMC level. For the electronic part, a full WF optimization (Jastrow and antisymmetric parts together) is made possible, thanks to state-of-the-art stochastic algorithms for energy minimization. In the optimization procedure, the first guess can be obtained at the mean-field level by a built-in DFT driver. The code has been efficiently parallelized by using a hybrid MPI-OpenMP protocol, which is also an ideal environment for exploiting the computational power of modern Graphics Processing Unit accelerators.</description><subject>Accelerators</subject><subject>Algorithms</subject><subject>Chemical bonds</subject><subject>Chemical physics</subject><subject>Chemical Sciences</subject><subject>Computer simulation</subject><subject>Computing costs</subject><subject>Condensed Matter</subject><subject>Condensed matter physics</subject><subject>Correlation</subject><subject>Density functional theory</subject><subject>Electron correlation calculations</subject><subject>Electronic structure</subject><subject>Electronic systems</subject><subject>Electronic wave function</subject><subject>Energy conservation</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Many body problems</subject><subject>Material chemistry</subject><subject>Materials Science</subject><subject>Molecular dynamics</subject><subject>Monte Carlo methods</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Parallel processing</subject><subject>Physics</subject><subject>Quantum chemistry</subject><subject>Quantum Physics</subject><subject>Schrodinger equations</subject><subject>Stochastic processes</subject><subject>Strongly Correlated Electrons</subject><subject>Toolkits</subject><subject>Wave functions</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90VFrHCEQB3ApDfSa9KHfQJKXtrDp6K6627fr0TSBC4WSFvok6ikx2dVE3cJ9-3q50EAe8jQw_HD-4yD0nsApAd5-ZqcAwKAVr9CCQD80gg_wGi0AKGkGDvwNepvzTUVE0G6B_lzNScefv79-wUs8qbBtdNxscYlxvPUFu5iw0tgHX3zEdrSmpBi8wdlP86hqM2Sst_h-VqHME76MoVi8UmmMR-jAqTHbd4_1EP06-3a1Om_WP75frJbrxnS9KM3QOysMHbjjduCcmA1QpxxlnQDNmKu5SQeO6JZpRVSnNi0VmvZaKGZ70beH6Hj_bszFy2x8sebaxBBqVkk4B8ZYRR_36FqN8i75SaWtjMrL8-Va7npARdsSIf6Saj_s7V2K97PNRU4-GzuOKtg4Z0k7GEjfc0IrPXlGb-KcQl13pwTnDAR5Gm5SzDlZ9z8BAbm7mmTy8WrVftrb3SIP__sC_gcfIJOo</recordid><startdate>20200529</startdate><enddate>20200529</enddate><creator>Nakano, Kousuke</creator><creator>Attaccalite, Claudio</creator><creator>Barborini, Matteo</creator><creator>Capriotti, Luca</creator><creator>Casula, Michele</creator><creator>Coccia, Emanuele</creator><creator>Dagrada, Mario</creator><creator>Genovese, Claudio</creator><creator>Luo, Ye</creator><creator>Mazzola, Guglielmo</creator><creator>Zen, Andrea</creator><creator>Sorella, Sandro</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7756-4355</orcidid><orcidid>https://orcid.org/0000-0002-2968-398X</orcidid><orcidid>https://orcid.org/0000-0002-5117-2385</orcidid><orcidid>https://orcid.org/0000-0002-7660-261X</orcidid><orcidid>https://orcid.org/0000-0002-2267-284X</orcidid><orcidid>https://orcid.org/0000-0001-7798-099X</orcidid><orcidid>https://orcid.org/0000-0003-3389-0989</orcidid><orcidid>https://orcid.org/0000-0002-8296-8132</orcidid><orcidid>https://orcid.org/0000-0002-8982-5169</orcidid><orcidid>https://orcid.org/0000-0003-1678-0999</orcidid><orcidid>https://orcid.org/0000-0002-7648-4078</orcidid><orcidid>https://orcid.org/0000000333890989</orcidid><orcidid>https://orcid.org/0000000282968132</orcidid><orcidid>https://orcid.org/0000000289825169</orcidid><orcidid>https://orcid.org/0000000276484078</orcidid><orcidid>https://orcid.org/0000000177564355</orcidid><orcidid>https://orcid.org/000000017798099X</orcidid><orcidid>https://orcid.org/0000000251172385</orcidid><orcidid>https://orcid.org/000000022968398X</orcidid><orcidid>https://orcid.org/000000022267284X</orcidid><orcidid>https://orcid.org/000000027660261X</orcidid><orcidid>https://orcid.org/0000000316780999</orcidid></search><sort><creationdate>20200529</creationdate><title>TurboRVB: A many-body toolkit for ab initio electronic simulations by quantum Monte Carlo</title><author>Nakano, Kousuke ; Attaccalite, Claudio ; Barborini, Matteo ; Capriotti, Luca ; Casula, Michele ; Coccia, Emanuele ; Dagrada, Mario ; Genovese, Claudio ; Luo, Ye ; Mazzola, Guglielmo ; Zen, Andrea ; Sorella, Sandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-98fe7c296f6e9661cd02faf25470b55f021140f1b35ba1a4ad327b28b7a5e8783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accelerators</topic><topic>Algorithms</topic><topic>Chemical bonds</topic><topic>Chemical physics</topic><topic>Chemical Sciences</topic><topic>Computer simulation</topic><topic>Computing costs</topic><topic>Condensed Matter</topic><topic>Condensed matter physics</topic><topic>Correlation</topic><topic>Density functional theory</topic><topic>Electron correlation calculations</topic><topic>Electronic structure</topic><topic>Electronic systems</topic><topic>Electronic wave function</topic><topic>Energy conservation</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Many body problems</topic><topic>Material chemistry</topic><topic>Materials Science</topic><topic>Molecular dynamics</topic><topic>Monte Carlo methods</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Parallel processing</topic><topic>Physics</topic><topic>Quantum chemistry</topic><topic>Quantum Physics</topic><topic>Schrodinger equations</topic><topic>Stochastic processes</topic><topic>Strongly Correlated Electrons</topic><topic>Toolkits</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakano, Kousuke</creatorcontrib><creatorcontrib>Attaccalite, Claudio</creatorcontrib><creatorcontrib>Barborini, Matteo</creatorcontrib><creatorcontrib>Capriotti, Luca</creatorcontrib><creatorcontrib>Casula, Michele</creatorcontrib><creatorcontrib>Coccia, Emanuele</creatorcontrib><creatorcontrib>Dagrada, Mario</creatorcontrib><creatorcontrib>Genovese, Claudio</creatorcontrib><creatorcontrib>Luo, Ye</creatorcontrib><creatorcontrib>Mazzola, Guglielmo</creatorcontrib><creatorcontrib>Zen, Andrea</creatorcontrib><creatorcontrib>Sorella, Sandro</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakano, Kousuke</au><au>Attaccalite, Claudio</au><au>Barborini, Matteo</au><au>Capriotti, Luca</au><au>Casula, Michele</au><au>Coccia, Emanuele</au><au>Dagrada, Mario</au><au>Genovese, Claudio</au><au>Luo, Ye</au><au>Mazzola, Guglielmo</au><au>Zen, Andrea</au><au>Sorella, Sandro</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TurboRVB: A many-body toolkit for ab initio electronic simulations by quantum Monte Carlo</atitle><jtitle>The Journal of chemical physics</jtitle><date>2020-05-29</date><risdate>2020</risdate><volume>152</volume><issue>20</issue><spage>204121</spage><epage>204121</epage><pages>204121-204121</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>TurboRVB is a computational package for ab initio Quantum Monte Carlo (QMC) simulations of both molecular and bulk electronic systems. The code implements two types of well established QMC algorithms: Variational Monte Carlo (VMC) and diffusion Monte Carlo in its robust and efficient lattice regularized variant. A key feature of the code is the possibility of using strongly correlated many-body wave functions (WFs), capable of describing several materials with very high accuracy, even when standard mean-field approaches [e.g., density functional theory (DFT)] fail. The electronic WF is obtained by applying a Jastrow factor, which takes into account dynamical correlations, to the most general mean-field ground state, written either as an antisymmetrized geminal power with spin-singlet pairing or as a Pfaffian, including both singlet and triplet correlations. This WF can be viewed as an efficient implementation of the so-called resonating valence bond (RVB) Ansatz, first proposed by Pauling and Anderson in quantum chemistry [L. Pauling, The Nature of the Chemical Bond (Cornell University Press, 1960)] and condensed matter physics [P.W. Anderson, Mat. Res. Bull 8, 153 (1973)], respectively. The RVB Ansatz implemented in TurboRVB has a large variational freedom, including the Jastrow correlated Slater determinant as its simplest, but nontrivial case. Moreover, it has the remarkable advantage of remaining with an affordable computational cost, proportional to the one spent for the evaluation of a single Slater determinant. Therefore, its application to large systems is computationally feasible. The WF is expanded in a localized basis set. Several basis set functions are implemented, such as Gaussian, Slater, and mixed types, with no restriction on the choice of their contraction. The code implements the adjoint algorithmic differentiation that enables a very efficient evaluation of energy derivatives, comprising the ionic forces. Thus, one can perform structural optimizations and molecular dynamics in the canonical NVT ensemble at the VMC level. For the electronic part, a full WF optimization (Jastrow and antisymmetric parts together) is made possible, thanks to state-of-the-art stochastic algorithms for energy minimization. In the optimization procedure, the first guess can be obtained at the mean-field level by a built-in DFT driver. The code has been efficiently parallelized by using a hybrid MPI-OpenMP protocol, which is also an ideal environment for exploiting the computational power of modern Graphics Processing Unit accelerators.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0005037</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0001-7756-4355</orcidid><orcidid>https://orcid.org/0000-0002-2968-398X</orcidid><orcidid>https://orcid.org/0000-0002-5117-2385</orcidid><orcidid>https://orcid.org/0000-0002-7660-261X</orcidid><orcidid>https://orcid.org/0000-0002-2267-284X</orcidid><orcidid>https://orcid.org/0000-0001-7798-099X</orcidid><orcidid>https://orcid.org/0000-0003-3389-0989</orcidid><orcidid>https://orcid.org/0000-0002-8296-8132</orcidid><orcidid>https://orcid.org/0000-0002-8982-5169</orcidid><orcidid>https://orcid.org/0000-0003-1678-0999</orcidid><orcidid>https://orcid.org/0000-0002-7648-4078</orcidid><orcidid>https://orcid.org/0000000333890989</orcidid><orcidid>https://orcid.org/0000000282968132</orcidid><orcidid>https://orcid.org/0000000289825169</orcidid><orcidid>https://orcid.org/0000000276484078</orcidid><orcidid>https://orcid.org/0000000177564355</orcidid><orcidid>https://orcid.org/000000017798099X</orcidid><orcidid>https://orcid.org/0000000251172385</orcidid><orcidid>https://orcid.org/000000022968398X</orcidid><orcidid>https://orcid.org/000000022267284X</orcidid><orcidid>https://orcid.org/000000027660261X</orcidid><orcidid>https://orcid.org/0000000316780999</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2020-05, Vol.152 (20), p.204121-204121 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_2409188612 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Accelerators Algorithms Chemical bonds Chemical physics Chemical Sciences Computer simulation Computing costs Condensed Matter Condensed matter physics Correlation Density functional theory Electron correlation calculations Electronic structure Electronic systems Electronic wave function Energy conservation INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Many body problems Material chemistry Materials Science Molecular dynamics Monte Carlo methods Optimization Optimization algorithms Parallel processing Physics Quantum chemistry Quantum Physics Schrodinger equations Stochastic processes Strongly Correlated Electrons Toolkits Wave functions |
title | TurboRVB: A many-body toolkit for ab initio electronic simulations by quantum Monte Carlo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A06%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TurboRVB:%20A%20many-body%20toolkit%20for%20ab%20initio%20electronic%20simulations%20by%20quantum%20Monte%20Carlo&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Nakano,%20Kousuke&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2020-05-29&rft.volume=152&rft.issue=20&rft.spage=204121&rft.epage=204121&rft.pages=204121-204121&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0005037&rft_dat=%3Cproquest_cross%3E2407665071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407665071&rft_id=info:pmid/&rfr_iscdi=true |