A Flexi‐PEGDA Upconversion Implant for Wireless Brain Photodynamic Therapy

Near‐infrared (NIR) activatable upconversion nanoparticles (UCNPs) enable wireless‐based phototherapies by converting deep‐tissue‐penetrating NIR to visible light. UCNPs are therefore ideal as wireless transducers for photodynamic therapy (PDT) of deep‐sited tumors. However, the retention of unseque...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2020-07, Vol.32 (29), p.e2001459-n/a
Hauptverfasser: Teh, Daniel Boon Loong, Bansal, Akshaya, Chai, Chou, Toh, Tan Boon, Tucker, Robert Alan Jappy, Gammad, Gil Gerald Lasam, Yeo, Yanzhuang, Lei, Zhendong, Zheng, Xiang, Yang, Fengyuan, Ho, John S., Bolem, Nagarjun, Wu, Bing Cheng, Gnanasammandhan, Muthu Kumar, Hooi, Lissa, Dawe, Gavin Stewart, Libedinsky, Camilo, Ong, Wei‐Yi, Halliwell, Barry, Chow, Edward Kai‐Hua, Lim, Kah‐Leong, Zhang, Yong, Kennedy, Brian K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 29
container_start_page e2001459
container_title Advanced materials (Weinheim)
container_volume 32
creator Teh, Daniel Boon Loong
Bansal, Akshaya
Chai, Chou
Toh, Tan Boon
Tucker, Robert Alan Jappy
Gammad, Gil Gerald Lasam
Yeo, Yanzhuang
Lei, Zhendong
Zheng, Xiang
Yang, Fengyuan
Ho, John S.
Bolem, Nagarjun
Wu, Bing Cheng
Gnanasammandhan, Muthu Kumar
Hooi, Lissa
Dawe, Gavin Stewart
Libedinsky, Camilo
Ong, Wei‐Yi
Halliwell, Barry
Chow, Edward Kai‐Hua
Lim, Kah‐Leong
Zhang, Yong
Kennedy, Brian K.
description Near‐infrared (NIR) activatable upconversion nanoparticles (UCNPs) enable wireless‐based phototherapies by converting deep‐tissue‐penetrating NIR to visible light. UCNPs are therefore ideal as wireless transducers for photodynamic therapy (PDT) of deep‐sited tumors. However, the retention of unsequestered UCNPs in tissue with minimal options for removal limits their clinical translation. To address this shortcoming, biocompatible UCNPs implants are developed to deliver upconversion photonic properties in a flexible, optical guide design. To enhance its translatability, the UCNPs implant is constructed with an FDA‐approved poly(ethylene glycol) diacrylate (PEGDA) core clad with fluorinated ethylene propylene (FEP). The emission spectrum of the UCNPs implant can be tuned to overlap with the absorption spectra of the clinically relevant photosensitizer, 5‐aminolevulinic acid (5‐ALA). The UCNPs implant can wirelessly transmit upconverted visible light till 8 cm in length and in a bendable manner even when implanted underneath the skin or scalp. With this system, it is demonstrated that NIR‐based chronic PDT is achievable in an untethered and noninvasive manner in a mouse xenograft glioblastoma multiforme (GBM) model. It is postulated that such encapsulated UCNPs implants represent a translational shift for wireless deep‐tissue phototherapy by enabling sequestration of UCNPs without compromising wireless deep‐tissue light delivery. Biocompatible upconversion hydrogel implants synergistically conserve the light‐guiding and near‐infrared transducing properties into a wireless light‐delivery implant. Such hydrogel‐based upconversion designs are explored to activate clinically relevant photosensitizer in wireless photodynamic therapy of glioblastoma multiforme. Upconversion implantable is potentially translatable to other phototherapies and as medical implants.
doi_str_mv 10.1002/adma.202001459
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2408822710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2408822710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3509-672b0c7150e6b42e5ece0b52cb3233820238ff4d5ca41b97bffa827b5e8fe8af3</originalsourceid><addsrcrecordid>eNqFkLFOwzAURS0EEqWwMkdiYUl5duIkHkNpS6UiOrRijBz3WU2VxMFugWx8At_Il5CqCCQWprecc3XfJeSSwoACsBu5quSAAQOgIRdHpEc5o34Igh-THoiA-yIKk1Ny5twGAEQEUY_MUm9c4lvx-f4xH03uUm_ZKFO_oHWFqb1p1ZSy3nraWO-psFiic96tlUXtzddma1ZtLatCeYs1Wtm05-REy9Lhxfftk-V4tBje-7PHyXSYznwVcBB-FLMcVEw5YJSHDDkqhJwzlQcsCJLuhSDROlxxJUOaizjXWiYszjkmGhOpgz65PuQ21jzv0G2zqnAKy64rmp3LWAhJwlhMoUOv_qAbs7N1166jGOe0qyE6anCglDXOWdRZY4tK2jajkO3HzfbjZj_jdoI4CK9Fie0_dJbePaS_7hdlo32g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425517159</pqid></control><display><type>article</type><title>A Flexi‐PEGDA Upconversion Implant for Wireless Brain Photodynamic Therapy</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Teh, Daniel Boon Loong ; Bansal, Akshaya ; Chai, Chou ; Toh, Tan Boon ; Tucker, Robert Alan Jappy ; Gammad, Gil Gerald Lasam ; Yeo, Yanzhuang ; Lei, Zhendong ; Zheng, Xiang ; Yang, Fengyuan ; Ho, John S. ; Bolem, Nagarjun ; Wu, Bing Cheng ; Gnanasammandhan, Muthu Kumar ; Hooi, Lissa ; Dawe, Gavin Stewart ; Libedinsky, Camilo ; Ong, Wei‐Yi ; Halliwell, Barry ; Chow, Edward Kai‐Hua ; Lim, Kah‐Leong ; Zhang, Yong ; Kennedy, Brian K.</creator><creatorcontrib>Teh, Daniel Boon Loong ; Bansal, Akshaya ; Chai, Chou ; Toh, Tan Boon ; Tucker, Robert Alan Jappy ; Gammad, Gil Gerald Lasam ; Yeo, Yanzhuang ; Lei, Zhendong ; Zheng, Xiang ; Yang, Fengyuan ; Ho, John S. ; Bolem, Nagarjun ; Wu, Bing Cheng ; Gnanasammandhan, Muthu Kumar ; Hooi, Lissa ; Dawe, Gavin Stewart ; Libedinsky, Camilo ; Ong, Wei‐Yi ; Halliwell, Barry ; Chow, Edward Kai‐Hua ; Lim, Kah‐Leong ; Zhang, Yong ; Kennedy, Brian K.</creatorcontrib><description>Near‐infrared (NIR) activatable upconversion nanoparticles (UCNPs) enable wireless‐based phototherapies by converting deep‐tissue‐penetrating NIR to visible light. UCNPs are therefore ideal as wireless transducers for photodynamic therapy (PDT) of deep‐sited tumors. However, the retention of unsequestered UCNPs in tissue with minimal options for removal limits their clinical translation. To address this shortcoming, biocompatible UCNPs implants are developed to deliver upconversion photonic properties in a flexible, optical guide design. To enhance its translatability, the UCNPs implant is constructed with an FDA‐approved poly(ethylene glycol) diacrylate (PEGDA) core clad with fluorinated ethylene propylene (FEP). The emission spectrum of the UCNPs implant can be tuned to overlap with the absorption spectra of the clinically relevant photosensitizer, 5‐aminolevulinic acid (5‐ALA). The UCNPs implant can wirelessly transmit upconverted visible light till 8 cm in length and in a bendable manner even when implanted underneath the skin or scalp. With this system, it is demonstrated that NIR‐based chronic PDT is achievable in an untethered and noninvasive manner in a mouse xenograft glioblastoma multiforme (GBM) model. It is postulated that such encapsulated UCNPs implants represent a translational shift for wireless deep‐tissue phototherapy by enabling sequestration of UCNPs without compromising wireless deep‐tissue light delivery. Biocompatible upconversion hydrogel implants synergistically conserve the light‐guiding and near‐infrared transducing properties into a wireless light‐delivery implant. Such hydrogel‐based upconversion designs are explored to activate clinically relevant photosensitizer in wireless photodynamic therapy of glioblastoma multiforme. Upconversion implantable is potentially translatable to other phototherapies and as medical implants.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202001459</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Absorption spectra ; Biocompatibility ; Fluorinated ethylene propylenes ; hydrogels ; Implants ; Materials science ; Nanoparticles ; optical fibers ; Optical properties ; Photodynamic therapy ; Polyethylene glycol ; Transducers ; Transplants &amp; implants ; Upconversion ; wireless operation ; Xenotransplantation</subject><ispartof>Advanced materials (Weinheim), 2020-07, Vol.32 (29), p.e2001459-n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3509-672b0c7150e6b42e5ece0b52cb3233820238ff4d5ca41b97bffa827b5e8fe8af3</citedby><cites>FETCH-LOGICAL-c3509-672b0c7150e6b42e5ece0b52cb3233820238ff4d5ca41b97bffa827b5e8fe8af3</cites><orcidid>0000-0002-5754-1874 ; 0000-0002-4560-8568</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202001459$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202001459$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Teh, Daniel Boon Loong</creatorcontrib><creatorcontrib>Bansal, Akshaya</creatorcontrib><creatorcontrib>Chai, Chou</creatorcontrib><creatorcontrib>Toh, Tan Boon</creatorcontrib><creatorcontrib>Tucker, Robert Alan Jappy</creatorcontrib><creatorcontrib>Gammad, Gil Gerald Lasam</creatorcontrib><creatorcontrib>Yeo, Yanzhuang</creatorcontrib><creatorcontrib>Lei, Zhendong</creatorcontrib><creatorcontrib>Zheng, Xiang</creatorcontrib><creatorcontrib>Yang, Fengyuan</creatorcontrib><creatorcontrib>Ho, John S.</creatorcontrib><creatorcontrib>Bolem, Nagarjun</creatorcontrib><creatorcontrib>Wu, Bing Cheng</creatorcontrib><creatorcontrib>Gnanasammandhan, Muthu Kumar</creatorcontrib><creatorcontrib>Hooi, Lissa</creatorcontrib><creatorcontrib>Dawe, Gavin Stewart</creatorcontrib><creatorcontrib>Libedinsky, Camilo</creatorcontrib><creatorcontrib>Ong, Wei‐Yi</creatorcontrib><creatorcontrib>Halliwell, Barry</creatorcontrib><creatorcontrib>Chow, Edward Kai‐Hua</creatorcontrib><creatorcontrib>Lim, Kah‐Leong</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Kennedy, Brian K.</creatorcontrib><title>A Flexi‐PEGDA Upconversion Implant for Wireless Brain Photodynamic Therapy</title><title>Advanced materials (Weinheim)</title><description>Near‐infrared (NIR) activatable upconversion nanoparticles (UCNPs) enable wireless‐based phototherapies by converting deep‐tissue‐penetrating NIR to visible light. UCNPs are therefore ideal as wireless transducers for photodynamic therapy (PDT) of deep‐sited tumors. However, the retention of unsequestered UCNPs in tissue with minimal options for removal limits their clinical translation. To address this shortcoming, biocompatible UCNPs implants are developed to deliver upconversion photonic properties in a flexible, optical guide design. To enhance its translatability, the UCNPs implant is constructed with an FDA‐approved poly(ethylene glycol) diacrylate (PEGDA) core clad with fluorinated ethylene propylene (FEP). The emission spectrum of the UCNPs implant can be tuned to overlap with the absorption spectra of the clinically relevant photosensitizer, 5‐aminolevulinic acid (5‐ALA). The UCNPs implant can wirelessly transmit upconverted visible light till 8 cm in length and in a bendable manner even when implanted underneath the skin or scalp. With this system, it is demonstrated that NIR‐based chronic PDT is achievable in an untethered and noninvasive manner in a mouse xenograft glioblastoma multiforme (GBM) model. It is postulated that such encapsulated UCNPs implants represent a translational shift for wireless deep‐tissue phototherapy by enabling sequestration of UCNPs without compromising wireless deep‐tissue light delivery. Biocompatible upconversion hydrogel implants synergistically conserve the light‐guiding and near‐infrared transducing properties into a wireless light‐delivery implant. Such hydrogel‐based upconversion designs are explored to activate clinically relevant photosensitizer in wireless photodynamic therapy of glioblastoma multiforme. Upconversion implantable is potentially translatable to other phototherapies and as medical implants.</description><subject>Absorption spectra</subject><subject>Biocompatibility</subject><subject>Fluorinated ethylene propylenes</subject><subject>hydrogels</subject><subject>Implants</subject><subject>Materials science</subject><subject>Nanoparticles</subject><subject>optical fibers</subject><subject>Optical properties</subject><subject>Photodynamic therapy</subject><subject>Polyethylene glycol</subject><subject>Transducers</subject><subject>Transplants &amp; implants</subject><subject>Upconversion</subject><subject>wireless operation</subject><subject>Xenotransplantation</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAURS0EEqWwMkdiYUl5duIkHkNpS6UiOrRijBz3WU2VxMFugWx8At_Il5CqCCQWprecc3XfJeSSwoACsBu5quSAAQOgIRdHpEc5o34Igh-THoiA-yIKk1Ny5twGAEQEUY_MUm9c4lvx-f4xH03uUm_ZKFO_oHWFqb1p1ZSy3nraWO-psFiic96tlUXtzddma1ZtLatCeYs1Wtm05-REy9Lhxfftk-V4tBje-7PHyXSYznwVcBB-FLMcVEw5YJSHDDkqhJwzlQcsCJLuhSDROlxxJUOaizjXWiYszjkmGhOpgz65PuQ21jzv0G2zqnAKy64rmp3LWAhJwlhMoUOv_qAbs7N1166jGOe0qyE6anCglDXOWdRZY4tK2jajkO3HzfbjZj_jdoI4CK9Fie0_dJbePaS_7hdlo32g</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Teh, Daniel Boon Loong</creator><creator>Bansal, Akshaya</creator><creator>Chai, Chou</creator><creator>Toh, Tan Boon</creator><creator>Tucker, Robert Alan Jappy</creator><creator>Gammad, Gil Gerald Lasam</creator><creator>Yeo, Yanzhuang</creator><creator>Lei, Zhendong</creator><creator>Zheng, Xiang</creator><creator>Yang, Fengyuan</creator><creator>Ho, John S.</creator><creator>Bolem, Nagarjun</creator><creator>Wu, Bing Cheng</creator><creator>Gnanasammandhan, Muthu Kumar</creator><creator>Hooi, Lissa</creator><creator>Dawe, Gavin Stewart</creator><creator>Libedinsky, Camilo</creator><creator>Ong, Wei‐Yi</creator><creator>Halliwell, Barry</creator><creator>Chow, Edward Kai‐Hua</creator><creator>Lim, Kah‐Leong</creator><creator>Zhang, Yong</creator><creator>Kennedy, Brian K.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5754-1874</orcidid><orcidid>https://orcid.org/0000-0002-4560-8568</orcidid></search><sort><creationdate>20200701</creationdate><title>A Flexi‐PEGDA Upconversion Implant for Wireless Brain Photodynamic Therapy</title><author>Teh, Daniel Boon Loong ; Bansal, Akshaya ; Chai, Chou ; Toh, Tan Boon ; Tucker, Robert Alan Jappy ; Gammad, Gil Gerald Lasam ; Yeo, Yanzhuang ; Lei, Zhendong ; Zheng, Xiang ; Yang, Fengyuan ; Ho, John S. ; Bolem, Nagarjun ; Wu, Bing Cheng ; Gnanasammandhan, Muthu Kumar ; Hooi, Lissa ; Dawe, Gavin Stewart ; Libedinsky, Camilo ; Ong, Wei‐Yi ; Halliwell, Barry ; Chow, Edward Kai‐Hua ; Lim, Kah‐Leong ; Zhang, Yong ; Kennedy, Brian K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3509-672b0c7150e6b42e5ece0b52cb3233820238ff4d5ca41b97bffa827b5e8fe8af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption spectra</topic><topic>Biocompatibility</topic><topic>Fluorinated ethylene propylenes</topic><topic>hydrogels</topic><topic>Implants</topic><topic>Materials science</topic><topic>Nanoparticles</topic><topic>optical fibers</topic><topic>Optical properties</topic><topic>Photodynamic therapy</topic><topic>Polyethylene glycol</topic><topic>Transducers</topic><topic>Transplants &amp; implants</topic><topic>Upconversion</topic><topic>wireless operation</topic><topic>Xenotransplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teh, Daniel Boon Loong</creatorcontrib><creatorcontrib>Bansal, Akshaya</creatorcontrib><creatorcontrib>Chai, Chou</creatorcontrib><creatorcontrib>Toh, Tan Boon</creatorcontrib><creatorcontrib>Tucker, Robert Alan Jappy</creatorcontrib><creatorcontrib>Gammad, Gil Gerald Lasam</creatorcontrib><creatorcontrib>Yeo, Yanzhuang</creatorcontrib><creatorcontrib>Lei, Zhendong</creatorcontrib><creatorcontrib>Zheng, Xiang</creatorcontrib><creatorcontrib>Yang, Fengyuan</creatorcontrib><creatorcontrib>Ho, John S.</creatorcontrib><creatorcontrib>Bolem, Nagarjun</creatorcontrib><creatorcontrib>Wu, Bing Cheng</creatorcontrib><creatorcontrib>Gnanasammandhan, Muthu Kumar</creatorcontrib><creatorcontrib>Hooi, Lissa</creatorcontrib><creatorcontrib>Dawe, Gavin Stewart</creatorcontrib><creatorcontrib>Libedinsky, Camilo</creatorcontrib><creatorcontrib>Ong, Wei‐Yi</creatorcontrib><creatorcontrib>Halliwell, Barry</creatorcontrib><creatorcontrib>Chow, Edward Kai‐Hua</creatorcontrib><creatorcontrib>Lim, Kah‐Leong</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Kennedy, Brian K.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teh, Daniel Boon Loong</au><au>Bansal, Akshaya</au><au>Chai, Chou</au><au>Toh, Tan Boon</au><au>Tucker, Robert Alan Jappy</au><au>Gammad, Gil Gerald Lasam</au><au>Yeo, Yanzhuang</au><au>Lei, Zhendong</au><au>Zheng, Xiang</au><au>Yang, Fengyuan</au><au>Ho, John S.</au><au>Bolem, Nagarjun</au><au>Wu, Bing Cheng</au><au>Gnanasammandhan, Muthu Kumar</au><au>Hooi, Lissa</au><au>Dawe, Gavin Stewart</au><au>Libedinsky, Camilo</au><au>Ong, Wei‐Yi</au><au>Halliwell, Barry</au><au>Chow, Edward Kai‐Hua</au><au>Lim, Kah‐Leong</au><au>Zhang, Yong</au><au>Kennedy, Brian K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Flexi‐PEGDA Upconversion Implant for Wireless Brain Photodynamic Therapy</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>32</volume><issue>29</issue><spage>e2001459</spage><epage>n/a</epage><pages>e2001459-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Near‐infrared (NIR) activatable upconversion nanoparticles (UCNPs) enable wireless‐based phototherapies by converting deep‐tissue‐penetrating NIR to visible light. UCNPs are therefore ideal as wireless transducers for photodynamic therapy (PDT) of deep‐sited tumors. However, the retention of unsequestered UCNPs in tissue with minimal options for removal limits their clinical translation. To address this shortcoming, biocompatible UCNPs implants are developed to deliver upconversion photonic properties in a flexible, optical guide design. To enhance its translatability, the UCNPs implant is constructed with an FDA‐approved poly(ethylene glycol) diacrylate (PEGDA) core clad with fluorinated ethylene propylene (FEP). The emission spectrum of the UCNPs implant can be tuned to overlap with the absorption spectra of the clinically relevant photosensitizer, 5‐aminolevulinic acid (5‐ALA). The UCNPs implant can wirelessly transmit upconverted visible light till 8 cm in length and in a bendable manner even when implanted underneath the skin or scalp. With this system, it is demonstrated that NIR‐based chronic PDT is achievable in an untethered and noninvasive manner in a mouse xenograft glioblastoma multiforme (GBM) model. It is postulated that such encapsulated UCNPs implants represent a translational shift for wireless deep‐tissue phototherapy by enabling sequestration of UCNPs without compromising wireless deep‐tissue light delivery. Biocompatible upconversion hydrogel implants synergistically conserve the light‐guiding and near‐infrared transducing properties into a wireless light‐delivery implant. Such hydrogel‐based upconversion designs are explored to activate clinically relevant photosensitizer in wireless photodynamic therapy of glioblastoma multiforme. Upconversion implantable is potentially translatable to other phototherapies and as medical implants.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202001459</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5754-1874</orcidid><orcidid>https://orcid.org/0000-0002-4560-8568</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2020-07, Vol.32 (29), p.e2001459-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2408822710
source Wiley Online Library Journals Frontfile Complete
subjects Absorption spectra
Biocompatibility
Fluorinated ethylene propylenes
hydrogels
Implants
Materials science
Nanoparticles
optical fibers
Optical properties
Photodynamic therapy
Polyethylene glycol
Transducers
Transplants & implants
Upconversion
wireless operation
Xenotransplantation
title A Flexi‐PEGDA Upconversion Implant for Wireless Brain Photodynamic Therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A34%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Flexi%E2%80%90PEGDA%20Upconversion%20Implant%20for%20Wireless%20Brain%20Photodynamic%20Therapy&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Teh,%20Daniel%20Boon%20Loong&rft.date=2020-07-01&rft.volume=32&rft.issue=29&rft.spage=e2001459&rft.epage=n/a&rft.pages=e2001459-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202001459&rft_dat=%3Cproquest_cross%3E2408822710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425517159&rft_id=info:pmid/&rfr_iscdi=true