A Flexi‐PEGDA Upconversion Implant for Wireless Brain Photodynamic Therapy
Near‐infrared (NIR) activatable upconversion nanoparticles (UCNPs) enable wireless‐based phototherapies by converting deep‐tissue‐penetrating NIR to visible light. UCNPs are therefore ideal as wireless transducers for photodynamic therapy (PDT) of deep‐sited tumors. However, the retention of unseque...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2020-07, Vol.32 (29), p.e2001459-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 29 |
container_start_page | e2001459 |
container_title | Advanced materials (Weinheim) |
container_volume | 32 |
creator | Teh, Daniel Boon Loong Bansal, Akshaya Chai, Chou Toh, Tan Boon Tucker, Robert Alan Jappy Gammad, Gil Gerald Lasam Yeo, Yanzhuang Lei, Zhendong Zheng, Xiang Yang, Fengyuan Ho, John S. Bolem, Nagarjun Wu, Bing Cheng Gnanasammandhan, Muthu Kumar Hooi, Lissa Dawe, Gavin Stewart Libedinsky, Camilo Ong, Wei‐Yi Halliwell, Barry Chow, Edward Kai‐Hua Lim, Kah‐Leong Zhang, Yong Kennedy, Brian K. |
description | Near‐infrared (NIR) activatable upconversion nanoparticles (UCNPs) enable wireless‐based phototherapies by converting deep‐tissue‐penetrating NIR to visible light. UCNPs are therefore ideal as wireless transducers for photodynamic therapy (PDT) of deep‐sited tumors. However, the retention of unsequestered UCNPs in tissue with minimal options for removal limits their clinical translation. To address this shortcoming, biocompatible UCNPs implants are developed to deliver upconversion photonic properties in a flexible, optical guide design. To enhance its translatability, the UCNPs implant is constructed with an FDA‐approved poly(ethylene glycol) diacrylate (PEGDA) core clad with fluorinated ethylene propylene (FEP). The emission spectrum of the UCNPs implant can be tuned to overlap with the absorption spectra of the clinically relevant photosensitizer, 5‐aminolevulinic acid (5‐ALA). The UCNPs implant can wirelessly transmit upconverted visible light till 8 cm in length and in a bendable manner even when implanted underneath the skin or scalp. With this system, it is demonstrated that NIR‐based chronic PDT is achievable in an untethered and noninvasive manner in a mouse xenograft glioblastoma multiforme (GBM) model. It is postulated that such encapsulated UCNPs implants represent a translational shift for wireless deep‐tissue phototherapy by enabling sequestration of UCNPs without compromising wireless deep‐tissue light delivery.
Biocompatible upconversion hydrogel implants synergistically conserve the light‐guiding and near‐infrared transducing properties into a wireless light‐delivery implant. Such hydrogel‐based upconversion designs are explored to activate clinically relevant photosensitizer in wireless photodynamic therapy of glioblastoma multiforme. Upconversion implantable is potentially translatable to other phototherapies and as medical implants. |
doi_str_mv | 10.1002/adma.202001459 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2408822710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2408822710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3509-672b0c7150e6b42e5ece0b52cb3233820238ff4d5ca41b97bffa827b5e8fe8af3</originalsourceid><addsrcrecordid>eNqFkLFOwzAURS0EEqWwMkdiYUl5duIkHkNpS6UiOrRijBz3WU2VxMFugWx8At_Il5CqCCQWprecc3XfJeSSwoACsBu5quSAAQOgIRdHpEc5o34Igh-THoiA-yIKk1Ny5twGAEQEUY_MUm9c4lvx-f4xH03uUm_ZKFO_oHWFqb1p1ZSy3nraWO-psFiic96tlUXtzddma1ZtLatCeYs1Wtm05-REy9Lhxfftk-V4tBje-7PHyXSYznwVcBB-FLMcVEw5YJSHDDkqhJwzlQcsCJLuhSDROlxxJUOaizjXWiYszjkmGhOpgz65PuQ21jzv0G2zqnAKy64rmp3LWAhJwlhMoUOv_qAbs7N1166jGOe0qyE6anCglDXOWdRZY4tK2jajkO3HzfbjZj_jdoI4CK9Fie0_dJbePaS_7hdlo32g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425517159</pqid></control><display><type>article</type><title>A Flexi‐PEGDA Upconversion Implant for Wireless Brain Photodynamic Therapy</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Teh, Daniel Boon Loong ; Bansal, Akshaya ; Chai, Chou ; Toh, Tan Boon ; Tucker, Robert Alan Jappy ; Gammad, Gil Gerald Lasam ; Yeo, Yanzhuang ; Lei, Zhendong ; Zheng, Xiang ; Yang, Fengyuan ; Ho, John S. ; Bolem, Nagarjun ; Wu, Bing Cheng ; Gnanasammandhan, Muthu Kumar ; Hooi, Lissa ; Dawe, Gavin Stewart ; Libedinsky, Camilo ; Ong, Wei‐Yi ; Halliwell, Barry ; Chow, Edward Kai‐Hua ; Lim, Kah‐Leong ; Zhang, Yong ; Kennedy, Brian K.</creator><creatorcontrib>Teh, Daniel Boon Loong ; Bansal, Akshaya ; Chai, Chou ; Toh, Tan Boon ; Tucker, Robert Alan Jappy ; Gammad, Gil Gerald Lasam ; Yeo, Yanzhuang ; Lei, Zhendong ; Zheng, Xiang ; Yang, Fengyuan ; Ho, John S. ; Bolem, Nagarjun ; Wu, Bing Cheng ; Gnanasammandhan, Muthu Kumar ; Hooi, Lissa ; Dawe, Gavin Stewart ; Libedinsky, Camilo ; Ong, Wei‐Yi ; Halliwell, Barry ; Chow, Edward Kai‐Hua ; Lim, Kah‐Leong ; Zhang, Yong ; Kennedy, Brian K.</creatorcontrib><description>Near‐infrared (NIR) activatable upconversion nanoparticles (UCNPs) enable wireless‐based phototherapies by converting deep‐tissue‐penetrating NIR to visible light. UCNPs are therefore ideal as wireless transducers for photodynamic therapy (PDT) of deep‐sited tumors. However, the retention of unsequestered UCNPs in tissue with minimal options for removal limits their clinical translation. To address this shortcoming, biocompatible UCNPs implants are developed to deliver upconversion photonic properties in a flexible, optical guide design. To enhance its translatability, the UCNPs implant is constructed with an FDA‐approved poly(ethylene glycol) diacrylate (PEGDA) core clad with fluorinated ethylene propylene (FEP). The emission spectrum of the UCNPs implant can be tuned to overlap with the absorption spectra of the clinically relevant photosensitizer, 5‐aminolevulinic acid (5‐ALA). The UCNPs implant can wirelessly transmit upconverted visible light till 8 cm in length and in a bendable manner even when implanted underneath the skin or scalp. With this system, it is demonstrated that NIR‐based chronic PDT is achievable in an untethered and noninvasive manner in a mouse xenograft glioblastoma multiforme (GBM) model. It is postulated that such encapsulated UCNPs implants represent a translational shift for wireless deep‐tissue phototherapy by enabling sequestration of UCNPs without compromising wireless deep‐tissue light delivery.
Biocompatible upconversion hydrogel implants synergistically conserve the light‐guiding and near‐infrared transducing properties into a wireless light‐delivery implant. Such hydrogel‐based upconversion designs are explored to activate clinically relevant photosensitizer in wireless photodynamic therapy of glioblastoma multiforme. Upconversion implantable is potentially translatable to other phototherapies and as medical implants.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202001459</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Absorption spectra ; Biocompatibility ; Fluorinated ethylene propylenes ; hydrogels ; Implants ; Materials science ; Nanoparticles ; optical fibers ; Optical properties ; Photodynamic therapy ; Polyethylene glycol ; Transducers ; Transplants & implants ; Upconversion ; wireless operation ; Xenotransplantation</subject><ispartof>Advanced materials (Weinheim), 2020-07, Vol.32 (29), p.e2001459-n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3509-672b0c7150e6b42e5ece0b52cb3233820238ff4d5ca41b97bffa827b5e8fe8af3</citedby><cites>FETCH-LOGICAL-c3509-672b0c7150e6b42e5ece0b52cb3233820238ff4d5ca41b97bffa827b5e8fe8af3</cites><orcidid>0000-0002-5754-1874 ; 0000-0002-4560-8568</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202001459$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202001459$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Teh, Daniel Boon Loong</creatorcontrib><creatorcontrib>Bansal, Akshaya</creatorcontrib><creatorcontrib>Chai, Chou</creatorcontrib><creatorcontrib>Toh, Tan Boon</creatorcontrib><creatorcontrib>Tucker, Robert Alan Jappy</creatorcontrib><creatorcontrib>Gammad, Gil Gerald Lasam</creatorcontrib><creatorcontrib>Yeo, Yanzhuang</creatorcontrib><creatorcontrib>Lei, Zhendong</creatorcontrib><creatorcontrib>Zheng, Xiang</creatorcontrib><creatorcontrib>Yang, Fengyuan</creatorcontrib><creatorcontrib>Ho, John S.</creatorcontrib><creatorcontrib>Bolem, Nagarjun</creatorcontrib><creatorcontrib>Wu, Bing Cheng</creatorcontrib><creatorcontrib>Gnanasammandhan, Muthu Kumar</creatorcontrib><creatorcontrib>Hooi, Lissa</creatorcontrib><creatorcontrib>Dawe, Gavin Stewart</creatorcontrib><creatorcontrib>Libedinsky, Camilo</creatorcontrib><creatorcontrib>Ong, Wei‐Yi</creatorcontrib><creatorcontrib>Halliwell, Barry</creatorcontrib><creatorcontrib>Chow, Edward Kai‐Hua</creatorcontrib><creatorcontrib>Lim, Kah‐Leong</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Kennedy, Brian K.</creatorcontrib><title>A Flexi‐PEGDA Upconversion Implant for Wireless Brain Photodynamic Therapy</title><title>Advanced materials (Weinheim)</title><description>Near‐infrared (NIR) activatable upconversion nanoparticles (UCNPs) enable wireless‐based phototherapies by converting deep‐tissue‐penetrating NIR to visible light. UCNPs are therefore ideal as wireless transducers for photodynamic therapy (PDT) of deep‐sited tumors. However, the retention of unsequestered UCNPs in tissue with minimal options for removal limits their clinical translation. To address this shortcoming, biocompatible UCNPs implants are developed to deliver upconversion photonic properties in a flexible, optical guide design. To enhance its translatability, the UCNPs implant is constructed with an FDA‐approved poly(ethylene glycol) diacrylate (PEGDA) core clad with fluorinated ethylene propylene (FEP). The emission spectrum of the UCNPs implant can be tuned to overlap with the absorption spectra of the clinically relevant photosensitizer, 5‐aminolevulinic acid (5‐ALA). The UCNPs implant can wirelessly transmit upconverted visible light till 8 cm in length and in a bendable manner even when implanted underneath the skin or scalp. With this system, it is demonstrated that NIR‐based chronic PDT is achievable in an untethered and noninvasive manner in a mouse xenograft glioblastoma multiforme (GBM) model. It is postulated that such encapsulated UCNPs implants represent a translational shift for wireless deep‐tissue phototherapy by enabling sequestration of UCNPs without compromising wireless deep‐tissue light delivery.
Biocompatible upconversion hydrogel implants synergistically conserve the light‐guiding and near‐infrared transducing properties into a wireless light‐delivery implant. Such hydrogel‐based upconversion designs are explored to activate clinically relevant photosensitizer in wireless photodynamic therapy of glioblastoma multiforme. Upconversion implantable is potentially translatable to other phototherapies and as medical implants.</description><subject>Absorption spectra</subject><subject>Biocompatibility</subject><subject>Fluorinated ethylene propylenes</subject><subject>hydrogels</subject><subject>Implants</subject><subject>Materials science</subject><subject>Nanoparticles</subject><subject>optical fibers</subject><subject>Optical properties</subject><subject>Photodynamic therapy</subject><subject>Polyethylene glycol</subject><subject>Transducers</subject><subject>Transplants & implants</subject><subject>Upconversion</subject><subject>wireless operation</subject><subject>Xenotransplantation</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAURS0EEqWwMkdiYUl5duIkHkNpS6UiOrRijBz3WU2VxMFugWx8At_Il5CqCCQWprecc3XfJeSSwoACsBu5quSAAQOgIRdHpEc5o34Igh-THoiA-yIKk1Ny5twGAEQEUY_MUm9c4lvx-f4xH03uUm_ZKFO_oHWFqb1p1ZSy3nraWO-psFiic96tlUXtzddma1ZtLatCeYs1Wtm05-REy9Lhxfftk-V4tBje-7PHyXSYznwVcBB-FLMcVEw5YJSHDDkqhJwzlQcsCJLuhSDROlxxJUOaizjXWiYszjkmGhOpgz65PuQ21jzv0G2zqnAKy64rmp3LWAhJwlhMoUOv_qAbs7N1166jGOe0qyE6anCglDXOWdRZY4tK2jajkO3HzfbjZj_jdoI4CK9Fie0_dJbePaS_7hdlo32g</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Teh, Daniel Boon Loong</creator><creator>Bansal, Akshaya</creator><creator>Chai, Chou</creator><creator>Toh, Tan Boon</creator><creator>Tucker, Robert Alan Jappy</creator><creator>Gammad, Gil Gerald Lasam</creator><creator>Yeo, Yanzhuang</creator><creator>Lei, Zhendong</creator><creator>Zheng, Xiang</creator><creator>Yang, Fengyuan</creator><creator>Ho, John S.</creator><creator>Bolem, Nagarjun</creator><creator>Wu, Bing Cheng</creator><creator>Gnanasammandhan, Muthu Kumar</creator><creator>Hooi, Lissa</creator><creator>Dawe, Gavin Stewart</creator><creator>Libedinsky, Camilo</creator><creator>Ong, Wei‐Yi</creator><creator>Halliwell, Barry</creator><creator>Chow, Edward Kai‐Hua</creator><creator>Lim, Kah‐Leong</creator><creator>Zhang, Yong</creator><creator>Kennedy, Brian K.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5754-1874</orcidid><orcidid>https://orcid.org/0000-0002-4560-8568</orcidid></search><sort><creationdate>20200701</creationdate><title>A Flexi‐PEGDA Upconversion Implant for Wireless Brain Photodynamic Therapy</title><author>Teh, Daniel Boon Loong ; Bansal, Akshaya ; Chai, Chou ; Toh, Tan Boon ; Tucker, Robert Alan Jappy ; Gammad, Gil Gerald Lasam ; Yeo, Yanzhuang ; Lei, Zhendong ; Zheng, Xiang ; Yang, Fengyuan ; Ho, John S. ; Bolem, Nagarjun ; Wu, Bing Cheng ; Gnanasammandhan, Muthu Kumar ; Hooi, Lissa ; Dawe, Gavin Stewart ; Libedinsky, Camilo ; Ong, Wei‐Yi ; Halliwell, Barry ; Chow, Edward Kai‐Hua ; Lim, Kah‐Leong ; Zhang, Yong ; Kennedy, Brian K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3509-672b0c7150e6b42e5ece0b52cb3233820238ff4d5ca41b97bffa827b5e8fe8af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption spectra</topic><topic>Biocompatibility</topic><topic>Fluorinated ethylene propylenes</topic><topic>hydrogels</topic><topic>Implants</topic><topic>Materials science</topic><topic>Nanoparticles</topic><topic>optical fibers</topic><topic>Optical properties</topic><topic>Photodynamic therapy</topic><topic>Polyethylene glycol</topic><topic>Transducers</topic><topic>Transplants & implants</topic><topic>Upconversion</topic><topic>wireless operation</topic><topic>Xenotransplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teh, Daniel Boon Loong</creatorcontrib><creatorcontrib>Bansal, Akshaya</creatorcontrib><creatorcontrib>Chai, Chou</creatorcontrib><creatorcontrib>Toh, Tan Boon</creatorcontrib><creatorcontrib>Tucker, Robert Alan Jappy</creatorcontrib><creatorcontrib>Gammad, Gil Gerald Lasam</creatorcontrib><creatorcontrib>Yeo, Yanzhuang</creatorcontrib><creatorcontrib>Lei, Zhendong</creatorcontrib><creatorcontrib>Zheng, Xiang</creatorcontrib><creatorcontrib>Yang, Fengyuan</creatorcontrib><creatorcontrib>Ho, John S.</creatorcontrib><creatorcontrib>Bolem, Nagarjun</creatorcontrib><creatorcontrib>Wu, Bing Cheng</creatorcontrib><creatorcontrib>Gnanasammandhan, Muthu Kumar</creatorcontrib><creatorcontrib>Hooi, Lissa</creatorcontrib><creatorcontrib>Dawe, Gavin Stewart</creatorcontrib><creatorcontrib>Libedinsky, Camilo</creatorcontrib><creatorcontrib>Ong, Wei‐Yi</creatorcontrib><creatorcontrib>Halliwell, Barry</creatorcontrib><creatorcontrib>Chow, Edward Kai‐Hua</creatorcontrib><creatorcontrib>Lim, Kah‐Leong</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Kennedy, Brian K.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teh, Daniel Boon Loong</au><au>Bansal, Akshaya</au><au>Chai, Chou</au><au>Toh, Tan Boon</au><au>Tucker, Robert Alan Jappy</au><au>Gammad, Gil Gerald Lasam</au><au>Yeo, Yanzhuang</au><au>Lei, Zhendong</au><au>Zheng, Xiang</au><au>Yang, Fengyuan</au><au>Ho, John S.</au><au>Bolem, Nagarjun</au><au>Wu, Bing Cheng</au><au>Gnanasammandhan, Muthu Kumar</au><au>Hooi, Lissa</au><au>Dawe, Gavin Stewart</au><au>Libedinsky, Camilo</au><au>Ong, Wei‐Yi</au><au>Halliwell, Barry</au><au>Chow, Edward Kai‐Hua</au><au>Lim, Kah‐Leong</au><au>Zhang, Yong</au><au>Kennedy, Brian K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Flexi‐PEGDA Upconversion Implant for Wireless Brain Photodynamic Therapy</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>32</volume><issue>29</issue><spage>e2001459</spage><epage>n/a</epage><pages>e2001459-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Near‐infrared (NIR) activatable upconversion nanoparticles (UCNPs) enable wireless‐based phototherapies by converting deep‐tissue‐penetrating NIR to visible light. UCNPs are therefore ideal as wireless transducers for photodynamic therapy (PDT) of deep‐sited tumors. However, the retention of unsequestered UCNPs in tissue with minimal options for removal limits their clinical translation. To address this shortcoming, biocompatible UCNPs implants are developed to deliver upconversion photonic properties in a flexible, optical guide design. To enhance its translatability, the UCNPs implant is constructed with an FDA‐approved poly(ethylene glycol) diacrylate (PEGDA) core clad with fluorinated ethylene propylene (FEP). The emission spectrum of the UCNPs implant can be tuned to overlap with the absorption spectra of the clinically relevant photosensitizer, 5‐aminolevulinic acid (5‐ALA). The UCNPs implant can wirelessly transmit upconverted visible light till 8 cm in length and in a bendable manner even when implanted underneath the skin or scalp. With this system, it is demonstrated that NIR‐based chronic PDT is achievable in an untethered and noninvasive manner in a mouse xenograft glioblastoma multiforme (GBM) model. It is postulated that such encapsulated UCNPs implants represent a translational shift for wireless deep‐tissue phototherapy by enabling sequestration of UCNPs without compromising wireless deep‐tissue light delivery.
Biocompatible upconversion hydrogel implants synergistically conserve the light‐guiding and near‐infrared transducing properties into a wireless light‐delivery implant. Such hydrogel‐based upconversion designs are explored to activate clinically relevant photosensitizer in wireless photodynamic therapy of glioblastoma multiforme. Upconversion implantable is potentially translatable to other phototherapies and as medical implants.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202001459</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5754-1874</orcidid><orcidid>https://orcid.org/0000-0002-4560-8568</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2020-07, Vol.32 (29), p.e2001459-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2408822710 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Absorption spectra Biocompatibility Fluorinated ethylene propylenes hydrogels Implants Materials science Nanoparticles optical fibers Optical properties Photodynamic therapy Polyethylene glycol Transducers Transplants & implants Upconversion wireless operation Xenotransplantation |
title | A Flexi‐PEGDA Upconversion Implant for Wireless Brain Photodynamic Therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A34%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Flexi%E2%80%90PEGDA%20Upconversion%20Implant%20for%20Wireless%20Brain%20Photodynamic%20Therapy&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Teh,%20Daniel%20Boon%20Loong&rft.date=2020-07-01&rft.volume=32&rft.issue=29&rft.spage=e2001459&rft.epage=n/a&rft.pages=e2001459-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202001459&rft_dat=%3Cproquest_cross%3E2408822710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425517159&rft_id=info:pmid/&rfr_iscdi=true |