Enhanced BiFeO3/Bi2Fe4O9/H2O2 heterogeneous system for sulfamethoxazole decontamination: System optimization and degradation pathways

[Display omitted] Sulfonamides as the major antibiotic have become emerging contaminants worldwide in aquatic environments. Herein, a heterogeneous Fenton-like oxidation driven by a novel BF-PMCs bismuth ferrites reported firstly for efficient degradation of sulfamethoxazole (SMX) in which the possi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2020-10, Vol.577, p.54-65
Hauptverfasser: Hu, Zhong-Ting, Liu, Jia-Wei, Zhao, Jia, Ding, Yin, Jin, Ziyan, Chen, Jinghuan, Dai, Qizhou, Pan, Bingjun, Chen, Zhong, Chen, Jianmeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 65
container_issue
container_start_page 54
container_title Journal of colloid and interface science
container_volume 577
creator Hu, Zhong-Ting
Liu, Jia-Wei
Zhao, Jia
Ding, Yin
Jin, Ziyan
Chen, Jinghuan
Dai, Qizhou
Pan, Bingjun
Chen, Zhong
Chen, Jianmeng
description [Display omitted] Sulfonamides as the major antibiotic have become emerging contaminants worldwide in aquatic environments. Herein, a heterogeneous Fenton-like oxidation driven by a novel BF-PMCs bismuth ferrites reported firstly for efficient degradation of sulfamethoxazole (SMX) in which the possible degradation pathways are thoroughly analyzed through identifying some of key intermediates (i.e., C8H11N3O4S, C4H4NO2, etc.) using liquid chromatography-mass spectrum (LC-MS), monitoring organic acids (i.e., acetic acid, pyruvic acid) and inorganic anions (i.e., sulfate, nitrate) using ion chromatography (IC), and detecting radical species (i.e., HO) using both chemical quenchers and fluorescence technique, simultaneously. The optimal operations in BF-PMCs/H2O2 system for SMX degradation are recommended at the conditions of initial pH ~4.5, 1.5 mg L−1 [SMX], 70 mM [H2O2], and BF-PMCs loading of 0.2 g L−1. The degradation rates (kinetic value of kapp) for SMX, azoxystrobin, bisphenol A, and 2,4-dichlorophenol are 9.5 × 10−3, 13.6 × 10−3, 7.3 × 10−3, and 5.9 × 10−3 min−1, respectively. Meanwhile, the degradation rates in BF-PMCs/H2O2 system for SMX degradation are slightly slower in the presence of inorganic anions (e.g., Cl−, NO3−) and NOM (e.g., humic acid). Based on an overall consideration, the BF-PMCs/H2O2 system has great potential for degradation of emerging organic pollutants (EOPs) in natural water systems.
doi_str_mv 10.1016/j.jcis.2020.05.043
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2408542017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979720306585</els_id><sourcerecordid>2408542017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-da88d31dedf2709c9eb157ac60374ffbc9f81343150d05f97ef35e0f0991e3bf3</originalsourceid><addsrcrecordid>eNp9kLFu2zAQhomgAeImfYFOGrNIPpJiZAZdaiOuAwTw0GQmaPIY05BEl6Sb2nvfu3KUudPhDt9_wP8R8pVCRYHeTXfVzvhUMWBQgaig5hdkQkGKsqHAP5EJAKOlbGRzRT6ntAOgVAg5IX8f-q3uDdpi7pe45tO5Z0us13K6YmtWbDFjDK_YYzikIh1Txq5wIRbp0DrdYd6GP_oUWiwsmtBn3fleZx_6--LnCId99p0_vR8L3dsBfI3ajvte5-2bPqYbcul0m_DLx7wmL8uH58WqfFr_eFx8fyoN5zyXVs9mllOL1rEGpJG4oaLR5g54Uzu3MdLNKK85FWBBONmg4wLBgZQU-cbxa3I7_t3H8OuAKavOJ4Ntq98LKlbDTNQMaDOgbERNDClFdGoffafjUVFQZ-dqp87O1dm5AqEG50Po2xjCocRvj1El4_Gs10c0Wdng_xf_B1dkjSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408542017</pqid></control><display><type>article</type><title>Enhanced BiFeO3/Bi2Fe4O9/H2O2 heterogeneous system for sulfamethoxazole decontamination: System optimization and degradation pathways</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Hu, Zhong-Ting ; Liu, Jia-Wei ; Zhao, Jia ; Ding, Yin ; Jin, Ziyan ; Chen, Jinghuan ; Dai, Qizhou ; Pan, Bingjun ; Chen, Zhong ; Chen, Jianmeng</creator><creatorcontrib>Hu, Zhong-Ting ; Liu, Jia-Wei ; Zhao, Jia ; Ding, Yin ; Jin, Ziyan ; Chen, Jinghuan ; Dai, Qizhou ; Pan, Bingjun ; Chen, Zhong ; Chen, Jianmeng</creatorcontrib><description>[Display omitted] Sulfonamides as the major antibiotic have become emerging contaminants worldwide in aquatic environments. Herein, a heterogeneous Fenton-like oxidation driven by a novel BF-PMCs bismuth ferrites reported firstly for efficient degradation of sulfamethoxazole (SMX) in which the possible degradation pathways are thoroughly analyzed through identifying some of key intermediates (i.e., C8H11N3O4S, C4H4NO2, etc.) using liquid chromatography-mass spectrum (LC-MS), monitoring organic acids (i.e., acetic acid, pyruvic acid) and inorganic anions (i.e., sulfate, nitrate) using ion chromatography (IC), and detecting radical species (i.e., HO) using both chemical quenchers and fluorescence technique, simultaneously. The optimal operations in BF-PMCs/H2O2 system for SMX degradation are recommended at the conditions of initial pH ~4.5, 1.5 mg L−1 [SMX], 70 mM [H2O2], and BF-PMCs loading of 0.2 g L−1. The degradation rates (kinetic value of kapp) for SMX, azoxystrobin, bisphenol A, and 2,4-dichlorophenol are 9.5 × 10−3, 13.6 × 10−3, 7.3 × 10−3, and 5.9 × 10−3 min−1, respectively. Meanwhile, the degradation rates in BF-PMCs/H2O2 system for SMX degradation are slightly slower in the presence of inorganic anions (e.g., Cl−, NO3−) and NOM (e.g., humic acid). Based on an overall consideration, the BF-PMCs/H2O2 system has great potential for degradation of emerging organic pollutants (EOPs) in natural water systems.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2020.05.043</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Degradation pathway ; Ferrites ; Heterogeneous Fenton-like oxidation ; Sulfamethoxazole</subject><ispartof>Journal of colloid and interface science, 2020-10, Vol.577, p.54-65</ispartof><rights>2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-da88d31dedf2709c9eb157ac60374ffbc9f81343150d05f97ef35e0f0991e3bf3</citedby><cites>FETCH-LOGICAL-c333t-da88d31dedf2709c9eb157ac60374ffbc9f81343150d05f97ef35e0f0991e3bf3</cites><orcidid>0000-0001-7518-1414</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2020.05.043$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Hu, Zhong-Ting</creatorcontrib><creatorcontrib>Liu, Jia-Wei</creatorcontrib><creatorcontrib>Zhao, Jia</creatorcontrib><creatorcontrib>Ding, Yin</creatorcontrib><creatorcontrib>Jin, Ziyan</creatorcontrib><creatorcontrib>Chen, Jinghuan</creatorcontrib><creatorcontrib>Dai, Qizhou</creatorcontrib><creatorcontrib>Pan, Bingjun</creatorcontrib><creatorcontrib>Chen, Zhong</creatorcontrib><creatorcontrib>Chen, Jianmeng</creatorcontrib><title>Enhanced BiFeO3/Bi2Fe4O9/H2O2 heterogeneous system for sulfamethoxazole decontamination: System optimization and degradation pathways</title><title>Journal of colloid and interface science</title><description>[Display omitted] Sulfonamides as the major antibiotic have become emerging contaminants worldwide in aquatic environments. Herein, a heterogeneous Fenton-like oxidation driven by a novel BF-PMCs bismuth ferrites reported firstly for efficient degradation of sulfamethoxazole (SMX) in which the possible degradation pathways are thoroughly analyzed through identifying some of key intermediates (i.e., C8H11N3O4S, C4H4NO2, etc.) using liquid chromatography-mass spectrum (LC-MS), monitoring organic acids (i.e., acetic acid, pyruvic acid) and inorganic anions (i.e., sulfate, nitrate) using ion chromatography (IC), and detecting radical species (i.e., HO) using both chemical quenchers and fluorescence technique, simultaneously. The optimal operations in BF-PMCs/H2O2 system for SMX degradation are recommended at the conditions of initial pH ~4.5, 1.5 mg L−1 [SMX], 70 mM [H2O2], and BF-PMCs loading of 0.2 g L−1. The degradation rates (kinetic value of kapp) for SMX, azoxystrobin, bisphenol A, and 2,4-dichlorophenol are 9.5 × 10−3, 13.6 × 10−3, 7.3 × 10−3, and 5.9 × 10−3 min−1, respectively. Meanwhile, the degradation rates in BF-PMCs/H2O2 system for SMX degradation are slightly slower in the presence of inorganic anions (e.g., Cl−, NO3−) and NOM (e.g., humic acid). Based on an overall consideration, the BF-PMCs/H2O2 system has great potential for degradation of emerging organic pollutants (EOPs) in natural water systems.</description><subject>Degradation pathway</subject><subject>Ferrites</subject><subject>Heterogeneous Fenton-like oxidation</subject><subject>Sulfamethoxazole</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kLFu2zAQhomgAeImfYFOGrNIPpJiZAZdaiOuAwTw0GQmaPIY05BEl6Sb2nvfu3KUudPhDt9_wP8R8pVCRYHeTXfVzvhUMWBQgaig5hdkQkGKsqHAP5EJAKOlbGRzRT6ntAOgVAg5IX8f-q3uDdpi7pe45tO5Z0us13K6YmtWbDFjDK_YYzikIh1Txq5wIRbp0DrdYd6GP_oUWiwsmtBn3fleZx_6--LnCId99p0_vR8L3dsBfI3ajvte5-2bPqYbcul0m_DLx7wmL8uH58WqfFr_eFx8fyoN5zyXVs9mllOL1rEGpJG4oaLR5g54Uzu3MdLNKK85FWBBONmg4wLBgZQU-cbxa3I7_t3H8OuAKavOJ4Ntq98LKlbDTNQMaDOgbERNDClFdGoffafjUVFQZ-dqp87O1dm5AqEG50Po2xjCocRvj1El4_Gs10c0Wdng_xf_B1dkjSA</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Hu, Zhong-Ting</creator><creator>Liu, Jia-Wei</creator><creator>Zhao, Jia</creator><creator>Ding, Yin</creator><creator>Jin, Ziyan</creator><creator>Chen, Jinghuan</creator><creator>Dai, Qizhou</creator><creator>Pan, Bingjun</creator><creator>Chen, Zhong</creator><creator>Chen, Jianmeng</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7518-1414</orcidid></search><sort><creationdate>20201001</creationdate><title>Enhanced BiFeO3/Bi2Fe4O9/H2O2 heterogeneous system for sulfamethoxazole decontamination: System optimization and degradation pathways</title><author>Hu, Zhong-Ting ; Liu, Jia-Wei ; Zhao, Jia ; Ding, Yin ; Jin, Ziyan ; Chen, Jinghuan ; Dai, Qizhou ; Pan, Bingjun ; Chen, Zhong ; Chen, Jianmeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-da88d31dedf2709c9eb157ac60374ffbc9f81343150d05f97ef35e0f0991e3bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Degradation pathway</topic><topic>Ferrites</topic><topic>Heterogeneous Fenton-like oxidation</topic><topic>Sulfamethoxazole</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Zhong-Ting</creatorcontrib><creatorcontrib>Liu, Jia-Wei</creatorcontrib><creatorcontrib>Zhao, Jia</creatorcontrib><creatorcontrib>Ding, Yin</creatorcontrib><creatorcontrib>Jin, Ziyan</creatorcontrib><creatorcontrib>Chen, Jinghuan</creatorcontrib><creatorcontrib>Dai, Qizhou</creatorcontrib><creatorcontrib>Pan, Bingjun</creatorcontrib><creatorcontrib>Chen, Zhong</creatorcontrib><creatorcontrib>Chen, Jianmeng</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Zhong-Ting</au><au>Liu, Jia-Wei</au><au>Zhao, Jia</au><au>Ding, Yin</au><au>Jin, Ziyan</au><au>Chen, Jinghuan</au><au>Dai, Qizhou</au><au>Pan, Bingjun</au><au>Chen, Zhong</au><au>Chen, Jianmeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced BiFeO3/Bi2Fe4O9/H2O2 heterogeneous system for sulfamethoxazole decontamination: System optimization and degradation pathways</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>577</volume><spage>54</spage><epage>65</epage><pages>54-65</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted] Sulfonamides as the major antibiotic have become emerging contaminants worldwide in aquatic environments. Herein, a heterogeneous Fenton-like oxidation driven by a novel BF-PMCs bismuth ferrites reported firstly for efficient degradation of sulfamethoxazole (SMX) in which the possible degradation pathways are thoroughly analyzed through identifying some of key intermediates (i.e., C8H11N3O4S, C4H4NO2, etc.) using liquid chromatography-mass spectrum (LC-MS), monitoring organic acids (i.e., acetic acid, pyruvic acid) and inorganic anions (i.e., sulfate, nitrate) using ion chromatography (IC), and detecting radical species (i.e., HO) using both chemical quenchers and fluorescence technique, simultaneously. The optimal operations in BF-PMCs/H2O2 system for SMX degradation are recommended at the conditions of initial pH ~4.5, 1.5 mg L−1 [SMX], 70 mM [H2O2], and BF-PMCs loading of 0.2 g L−1. The degradation rates (kinetic value of kapp) for SMX, azoxystrobin, bisphenol A, and 2,4-dichlorophenol are 9.5 × 10−3, 13.6 × 10−3, 7.3 × 10−3, and 5.9 × 10−3 min−1, respectively. Meanwhile, the degradation rates in BF-PMCs/H2O2 system for SMX degradation are slightly slower in the presence of inorganic anions (e.g., Cl−, NO3−) and NOM (e.g., humic acid). Based on an overall consideration, the BF-PMCs/H2O2 system has great potential for degradation of emerging organic pollutants (EOPs) in natural water systems.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2020.05.043</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7518-1414</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2020-10, Vol.577, p.54-65
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_2408542017
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Degradation pathway
Ferrites
Heterogeneous Fenton-like oxidation
Sulfamethoxazole
title Enhanced BiFeO3/Bi2Fe4O9/H2O2 heterogeneous system for sulfamethoxazole decontamination: System optimization and degradation pathways
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A08%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20BiFeO3/Bi2Fe4O9/H2O2%20heterogeneous%20system%20for%20sulfamethoxazole%20decontamination:%20System%20optimization%20and%20degradation%20pathways&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Hu,%20Zhong-Ting&rft.date=2020-10-01&rft.volume=577&rft.spage=54&rft.epage=65&rft.pages=54-65&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2020.05.043&rft_dat=%3Cproquest_cross%3E2408542017%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2408542017&rft_id=info:pmid/&rft_els_id=S0021979720306585&rfr_iscdi=true