Enhanced BiFeO3/Bi2Fe4O9/H2O2 heterogeneous system for sulfamethoxazole decontamination: System optimization and degradation pathways
[Display omitted] Sulfonamides as the major antibiotic have become emerging contaminants worldwide in aquatic environments. Herein, a heterogeneous Fenton-like oxidation driven by a novel BF-PMCs bismuth ferrites reported firstly for efficient degradation of sulfamethoxazole (SMX) in which the possi...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2020-10, Vol.577, p.54-65 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 65 |
---|---|
container_issue | |
container_start_page | 54 |
container_title | Journal of colloid and interface science |
container_volume | 577 |
creator | Hu, Zhong-Ting Liu, Jia-Wei Zhao, Jia Ding, Yin Jin, Ziyan Chen, Jinghuan Dai, Qizhou Pan, Bingjun Chen, Zhong Chen, Jianmeng |
description | [Display omitted]
Sulfonamides as the major antibiotic have become emerging contaminants worldwide in aquatic environments. Herein, a heterogeneous Fenton-like oxidation driven by a novel BF-PMCs bismuth ferrites reported firstly for efficient degradation of sulfamethoxazole (SMX) in which the possible degradation pathways are thoroughly analyzed through identifying some of key intermediates (i.e., C8H11N3O4S, C4H4NO2, etc.) using liquid chromatography-mass spectrum (LC-MS), monitoring organic acids (i.e., acetic acid, pyruvic acid) and inorganic anions (i.e., sulfate, nitrate) using ion chromatography (IC), and detecting radical species (i.e., HO) using both chemical quenchers and fluorescence technique, simultaneously. The optimal operations in BF-PMCs/H2O2 system for SMX degradation are recommended at the conditions of initial pH ~4.5, 1.5 mg L−1 [SMX], 70 mM [H2O2], and BF-PMCs loading of 0.2 g L−1. The degradation rates (kinetic value of kapp) for SMX, azoxystrobin, bisphenol A, and 2,4-dichlorophenol are 9.5 × 10−3, 13.6 × 10−3, 7.3 × 10−3, and 5.9 × 10−3 min−1, respectively. Meanwhile, the degradation rates in BF-PMCs/H2O2 system for SMX degradation are slightly slower in the presence of inorganic anions (e.g., Cl−, NO3−) and NOM (e.g., humic acid). Based on an overall consideration, the BF-PMCs/H2O2 system has great potential for degradation of emerging organic pollutants (EOPs) in natural water systems. |
doi_str_mv | 10.1016/j.jcis.2020.05.043 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2408542017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979720306585</els_id><sourcerecordid>2408542017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-da88d31dedf2709c9eb157ac60374ffbc9f81343150d05f97ef35e0f0991e3bf3</originalsourceid><addsrcrecordid>eNp9kLFu2zAQhomgAeImfYFOGrNIPpJiZAZdaiOuAwTw0GQmaPIY05BEl6Sb2nvfu3KUudPhDt9_wP8R8pVCRYHeTXfVzvhUMWBQgaig5hdkQkGKsqHAP5EJAKOlbGRzRT6ntAOgVAg5IX8f-q3uDdpi7pe45tO5Z0us13K6YmtWbDFjDK_YYzikIh1Txq5wIRbp0DrdYd6GP_oUWiwsmtBn3fleZx_6--LnCId99p0_vR8L3dsBfI3ajvte5-2bPqYbcul0m_DLx7wmL8uH58WqfFr_eFx8fyoN5zyXVs9mllOL1rEGpJG4oaLR5g54Uzu3MdLNKK85FWBBONmg4wLBgZQU-cbxa3I7_t3H8OuAKavOJ4Ntq98LKlbDTNQMaDOgbERNDClFdGoffafjUVFQZ-dqp87O1dm5AqEG50Po2xjCocRvj1El4_Gs10c0Wdng_xf_B1dkjSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408542017</pqid></control><display><type>article</type><title>Enhanced BiFeO3/Bi2Fe4O9/H2O2 heterogeneous system for sulfamethoxazole decontamination: System optimization and degradation pathways</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Hu, Zhong-Ting ; Liu, Jia-Wei ; Zhao, Jia ; Ding, Yin ; Jin, Ziyan ; Chen, Jinghuan ; Dai, Qizhou ; Pan, Bingjun ; Chen, Zhong ; Chen, Jianmeng</creator><creatorcontrib>Hu, Zhong-Ting ; Liu, Jia-Wei ; Zhao, Jia ; Ding, Yin ; Jin, Ziyan ; Chen, Jinghuan ; Dai, Qizhou ; Pan, Bingjun ; Chen, Zhong ; Chen, Jianmeng</creatorcontrib><description>[Display omitted]
Sulfonamides as the major antibiotic have become emerging contaminants worldwide in aquatic environments. Herein, a heterogeneous Fenton-like oxidation driven by a novel BF-PMCs bismuth ferrites reported firstly for efficient degradation of sulfamethoxazole (SMX) in which the possible degradation pathways are thoroughly analyzed through identifying some of key intermediates (i.e., C8H11N3O4S, C4H4NO2, etc.) using liquid chromatography-mass spectrum (LC-MS), monitoring organic acids (i.e., acetic acid, pyruvic acid) and inorganic anions (i.e., sulfate, nitrate) using ion chromatography (IC), and detecting radical species (i.e., HO) using both chemical quenchers and fluorescence technique, simultaneously. The optimal operations in BF-PMCs/H2O2 system for SMX degradation are recommended at the conditions of initial pH ~4.5, 1.5 mg L−1 [SMX], 70 mM [H2O2], and BF-PMCs loading of 0.2 g L−1. The degradation rates (kinetic value of kapp) for SMX, azoxystrobin, bisphenol A, and 2,4-dichlorophenol are 9.5 × 10−3, 13.6 × 10−3, 7.3 × 10−3, and 5.9 × 10−3 min−1, respectively. Meanwhile, the degradation rates in BF-PMCs/H2O2 system for SMX degradation are slightly slower in the presence of inorganic anions (e.g., Cl−, NO3−) and NOM (e.g., humic acid). Based on an overall consideration, the BF-PMCs/H2O2 system has great potential for degradation of emerging organic pollutants (EOPs) in natural water systems.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2020.05.043</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Degradation pathway ; Ferrites ; Heterogeneous Fenton-like oxidation ; Sulfamethoxazole</subject><ispartof>Journal of colloid and interface science, 2020-10, Vol.577, p.54-65</ispartof><rights>2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-da88d31dedf2709c9eb157ac60374ffbc9f81343150d05f97ef35e0f0991e3bf3</citedby><cites>FETCH-LOGICAL-c333t-da88d31dedf2709c9eb157ac60374ffbc9f81343150d05f97ef35e0f0991e3bf3</cites><orcidid>0000-0001-7518-1414</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2020.05.043$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Hu, Zhong-Ting</creatorcontrib><creatorcontrib>Liu, Jia-Wei</creatorcontrib><creatorcontrib>Zhao, Jia</creatorcontrib><creatorcontrib>Ding, Yin</creatorcontrib><creatorcontrib>Jin, Ziyan</creatorcontrib><creatorcontrib>Chen, Jinghuan</creatorcontrib><creatorcontrib>Dai, Qizhou</creatorcontrib><creatorcontrib>Pan, Bingjun</creatorcontrib><creatorcontrib>Chen, Zhong</creatorcontrib><creatorcontrib>Chen, Jianmeng</creatorcontrib><title>Enhanced BiFeO3/Bi2Fe4O9/H2O2 heterogeneous system for sulfamethoxazole decontamination: System optimization and degradation pathways</title><title>Journal of colloid and interface science</title><description>[Display omitted]
Sulfonamides as the major antibiotic have become emerging contaminants worldwide in aquatic environments. Herein, a heterogeneous Fenton-like oxidation driven by a novel BF-PMCs bismuth ferrites reported firstly for efficient degradation of sulfamethoxazole (SMX) in which the possible degradation pathways are thoroughly analyzed through identifying some of key intermediates (i.e., C8H11N3O4S, C4H4NO2, etc.) using liquid chromatography-mass spectrum (LC-MS), monitoring organic acids (i.e., acetic acid, pyruvic acid) and inorganic anions (i.e., sulfate, nitrate) using ion chromatography (IC), and detecting radical species (i.e., HO) using both chemical quenchers and fluorescence technique, simultaneously. The optimal operations in BF-PMCs/H2O2 system for SMX degradation are recommended at the conditions of initial pH ~4.5, 1.5 mg L−1 [SMX], 70 mM [H2O2], and BF-PMCs loading of 0.2 g L−1. The degradation rates (kinetic value of kapp) for SMX, azoxystrobin, bisphenol A, and 2,4-dichlorophenol are 9.5 × 10−3, 13.6 × 10−3, 7.3 × 10−3, and 5.9 × 10−3 min−1, respectively. Meanwhile, the degradation rates in BF-PMCs/H2O2 system for SMX degradation are slightly slower in the presence of inorganic anions (e.g., Cl−, NO3−) and NOM (e.g., humic acid). Based on an overall consideration, the BF-PMCs/H2O2 system has great potential for degradation of emerging organic pollutants (EOPs) in natural water systems.</description><subject>Degradation pathway</subject><subject>Ferrites</subject><subject>Heterogeneous Fenton-like oxidation</subject><subject>Sulfamethoxazole</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kLFu2zAQhomgAeImfYFOGrNIPpJiZAZdaiOuAwTw0GQmaPIY05BEl6Sb2nvfu3KUudPhDt9_wP8R8pVCRYHeTXfVzvhUMWBQgaig5hdkQkGKsqHAP5EJAKOlbGRzRT6ntAOgVAg5IX8f-q3uDdpi7pe45tO5Z0us13K6YmtWbDFjDK_YYzikIh1Txq5wIRbp0DrdYd6GP_oUWiwsmtBn3fleZx_6--LnCId99p0_vR8L3dsBfI3ajvte5-2bPqYbcul0m_DLx7wmL8uH58WqfFr_eFx8fyoN5zyXVs9mllOL1rEGpJG4oaLR5g54Uzu3MdLNKK85FWBBONmg4wLBgZQU-cbxa3I7_t3H8OuAKavOJ4Ntq98LKlbDTNQMaDOgbERNDClFdGoffafjUVFQZ-dqp87O1dm5AqEG50Po2xjCocRvj1El4_Gs10c0Wdng_xf_B1dkjSA</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Hu, Zhong-Ting</creator><creator>Liu, Jia-Wei</creator><creator>Zhao, Jia</creator><creator>Ding, Yin</creator><creator>Jin, Ziyan</creator><creator>Chen, Jinghuan</creator><creator>Dai, Qizhou</creator><creator>Pan, Bingjun</creator><creator>Chen, Zhong</creator><creator>Chen, Jianmeng</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7518-1414</orcidid></search><sort><creationdate>20201001</creationdate><title>Enhanced BiFeO3/Bi2Fe4O9/H2O2 heterogeneous system for sulfamethoxazole decontamination: System optimization and degradation pathways</title><author>Hu, Zhong-Ting ; Liu, Jia-Wei ; Zhao, Jia ; Ding, Yin ; Jin, Ziyan ; Chen, Jinghuan ; Dai, Qizhou ; Pan, Bingjun ; Chen, Zhong ; Chen, Jianmeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-da88d31dedf2709c9eb157ac60374ffbc9f81343150d05f97ef35e0f0991e3bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Degradation pathway</topic><topic>Ferrites</topic><topic>Heterogeneous Fenton-like oxidation</topic><topic>Sulfamethoxazole</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Zhong-Ting</creatorcontrib><creatorcontrib>Liu, Jia-Wei</creatorcontrib><creatorcontrib>Zhao, Jia</creatorcontrib><creatorcontrib>Ding, Yin</creatorcontrib><creatorcontrib>Jin, Ziyan</creatorcontrib><creatorcontrib>Chen, Jinghuan</creatorcontrib><creatorcontrib>Dai, Qizhou</creatorcontrib><creatorcontrib>Pan, Bingjun</creatorcontrib><creatorcontrib>Chen, Zhong</creatorcontrib><creatorcontrib>Chen, Jianmeng</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Zhong-Ting</au><au>Liu, Jia-Wei</au><au>Zhao, Jia</au><au>Ding, Yin</au><au>Jin, Ziyan</au><au>Chen, Jinghuan</au><au>Dai, Qizhou</au><au>Pan, Bingjun</au><au>Chen, Zhong</au><au>Chen, Jianmeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced BiFeO3/Bi2Fe4O9/H2O2 heterogeneous system for sulfamethoxazole decontamination: System optimization and degradation pathways</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>577</volume><spage>54</spage><epage>65</epage><pages>54-65</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted]
Sulfonamides as the major antibiotic have become emerging contaminants worldwide in aquatic environments. Herein, a heterogeneous Fenton-like oxidation driven by a novel BF-PMCs bismuth ferrites reported firstly for efficient degradation of sulfamethoxazole (SMX) in which the possible degradation pathways are thoroughly analyzed through identifying some of key intermediates (i.e., C8H11N3O4S, C4H4NO2, etc.) using liquid chromatography-mass spectrum (LC-MS), monitoring organic acids (i.e., acetic acid, pyruvic acid) and inorganic anions (i.e., sulfate, nitrate) using ion chromatography (IC), and detecting radical species (i.e., HO) using both chemical quenchers and fluorescence technique, simultaneously. The optimal operations in BF-PMCs/H2O2 system for SMX degradation are recommended at the conditions of initial pH ~4.5, 1.5 mg L−1 [SMX], 70 mM [H2O2], and BF-PMCs loading of 0.2 g L−1. The degradation rates (kinetic value of kapp) for SMX, azoxystrobin, bisphenol A, and 2,4-dichlorophenol are 9.5 × 10−3, 13.6 × 10−3, 7.3 × 10−3, and 5.9 × 10−3 min−1, respectively. Meanwhile, the degradation rates in BF-PMCs/H2O2 system for SMX degradation are slightly slower in the presence of inorganic anions (e.g., Cl−, NO3−) and NOM (e.g., humic acid). Based on an overall consideration, the BF-PMCs/H2O2 system has great potential for degradation of emerging organic pollutants (EOPs) in natural water systems.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2020.05.043</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7518-1414</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2020-10, Vol.577, p.54-65 |
issn | 0021-9797 1095-7103 |
language | eng |
recordid | cdi_proquest_miscellaneous_2408542017 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Degradation pathway Ferrites Heterogeneous Fenton-like oxidation Sulfamethoxazole |
title | Enhanced BiFeO3/Bi2Fe4O9/H2O2 heterogeneous system for sulfamethoxazole decontamination: System optimization and degradation pathways |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A08%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20BiFeO3/Bi2Fe4O9/H2O2%20heterogeneous%20system%20for%20sulfamethoxazole%20decontamination:%20System%20optimization%20and%20degradation%20pathways&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Hu,%20Zhong-Ting&rft.date=2020-10-01&rft.volume=577&rft.spage=54&rft.epage=65&rft.pages=54-65&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2020.05.043&rft_dat=%3Cproquest_cross%3E2408542017%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2408542017&rft_id=info:pmid/&rft_els_id=S0021979720306585&rfr_iscdi=true |