Solvation effects on wavenumbers and absorption intensities of the OH-stretch vibration in phenolic compounds – electrical- and mechanical anharmonicity via a combined DFT/Numerov approach

Previous measurements of fundamental, first-, second- and third overtones of the OH-stretching vibration of phenol and 2,6-difluoro-phenol by use of visible (Vis), near-infrared (NIR) and infrared (IR) spectroscopy revealed an oscillating pattern in the intensity quotient between the two kinds of so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2020-01, Vol.22 (23), p.13017-13029
Hauptverfasser: Schuler, Manuel J., Hofer, Thomas S., Morisawa, Yusuke, Futami, Yoshisuke, Huck, Christian W., Ozaki, Yukihiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13029
container_issue 23
container_start_page 13017
container_title Physical chemistry chemical physics : PCCP
container_volume 22
creator Schuler, Manuel J.
Hofer, Thomas S.
Morisawa, Yusuke
Futami, Yoshisuke
Huck, Christian W.
Ozaki, Yukihiro
description Previous measurements of fundamental, first-, second- and third overtones of the OH-stretching vibration of phenol and 2,6-difluoro-phenol by use of visible (Vis), near-infrared (NIR) and infrared (IR) spectroscopy revealed an oscillating pattern in the intensity quotient between the two kinds of solvents, carbon tetrachloride and n -hexane, upon increase of the vibrational quantum number, which could not be reproduced utilizing quantum mechanical calculations in implicit solvation. In the present study this phenomenon was successfully explained for the first time, employing an explicit consideration of solute–solvent interactions in combination with modern grid-based methods to solve the time-independent Schrödinger equation. The capabilities of this framework of (i) not requiring any assumptions on the form of the resulting wave function, (ii) focusing the description on the vibrational mode of interest and (iii) taking solute–solvent interactions explicitly into account are a particularly lucid example of the advantages in applying state-of-the-art approaches in investigations of challenging vibrational quantum problems. The property of grid-based methods being directly applied onto any given potential energy grid together with point (i) enable to analyse the impact of mechanical- and electrical anharmonicity independently. Especially the detailed investigation of the latter contribution when moving from a harmonic to an anharmonic potential in conjunction with the explicit consideration of solvent effects at the example of an actual chemical system ( i.e. not discussing these effects employing mere model potentials) demonstrate the manifold benefit achieved using the applied DFT/Numerov strategy.
doi_str_mv 10.1039/c9cp05594k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2408535501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2408535501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-71e1e585c7f776ddd040101b70536d03cc53a4c9d5485ddf7b9dfcb6d43dcb53</originalsourceid><addsrcrecordid>eNpdkU1qHDEQhRtjg383PoEgmxBojxRJ_bMMk4wdMtgGz75Rl6ppOd1SR1JP8C538H18GJ8kmrHJIpuqevDVewWVZZeMXjHK6wXUMFEpa_HzIDthouB5TStx-G8ui-PsNIRHSimTjJ9kLw9u2KponCXYdQgxkDT-Vlu089iiD0RZTVQbnJ_2lLERbTDRYCI7Enskdzd5iB4j9GRrWq_eOTL1aN1ggIAbJzdbHcjrn2eCQ4rxBtSQ781HhF7ZnU6yV350SZj4lMwUUbvl1ljU5Otqs7idR_RuS9Q0eaegP8-OOjUEvHjvZ9lm9W2zvMnXd9ffl1_WOQhexLxkyFBWEsquLAutNRWUUdaWVPJCUw4guRJQaykqqXVXtrXuoC204Bpayc-yj2-2KfXXjCE2owmAw6Asujk0nwWtJJeSsoR--A99dLO36bhEMV6VPNVEfXqjwLsQPHbN5M2o_FPDaLP7ZLOsl_f7T_7gfwHhqpZO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413873413</pqid></control><display><type>article</type><title>Solvation effects on wavenumbers and absorption intensities of the OH-stretch vibration in phenolic compounds – electrical- and mechanical anharmonicity via a combined DFT/Numerov approach</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Schuler, Manuel J. ; Hofer, Thomas S. ; Morisawa, Yusuke ; Futami, Yoshisuke ; Huck, Christian W. ; Ozaki, Yukihiro</creator><creatorcontrib>Schuler, Manuel J. ; Hofer, Thomas S. ; Morisawa, Yusuke ; Futami, Yoshisuke ; Huck, Christian W. ; Ozaki, Yukihiro</creatorcontrib><description>Previous measurements of fundamental, first-, second- and third overtones of the OH-stretching vibration of phenol and 2,6-difluoro-phenol by use of visible (Vis), near-infrared (NIR) and infrared (IR) spectroscopy revealed an oscillating pattern in the intensity quotient between the two kinds of solvents, carbon tetrachloride and n -hexane, upon increase of the vibrational quantum number, which could not be reproduced utilizing quantum mechanical calculations in implicit solvation. In the present study this phenomenon was successfully explained for the first time, employing an explicit consideration of solute–solvent interactions in combination with modern grid-based methods to solve the time-independent Schrödinger equation. The capabilities of this framework of (i) not requiring any assumptions on the form of the resulting wave function, (ii) focusing the description on the vibrational mode of interest and (iii) taking solute–solvent interactions explicitly into account are a particularly lucid example of the advantages in applying state-of-the-art approaches in investigations of challenging vibrational quantum problems. The property of grid-based methods being directly applied onto any given potential energy grid together with point (i) enable to analyse the impact of mechanical- and electrical anharmonicity independently. Especially the detailed investigation of the latter contribution when moving from a harmonic to an anharmonic potential in conjunction with the explicit consideration of solvent effects at the example of an actual chemical system ( i.e. not discussing these effects employing mere model potentials) demonstrate the manifold benefit achieved using the applied DFT/Numerov strategy.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c9cp05594k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anharmonicity ; Carbon tetrachloride ; Electric power grids ; Impact analysis ; Infrared spectroscopy ; Phenols ; Potential energy ; Quantum mechanics ; Quotients ; Schrodinger equation ; Solvation ; Solvents ; Vibration ; Wave functions</subject><ispartof>Physical chemistry chemical physics : PCCP, 2020-01, Vol.22 (23), p.13017-13029</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-71e1e585c7f776ddd040101b70536d03cc53a4c9d5485ddf7b9dfcb6d43dcb53</citedby><cites>FETCH-LOGICAL-c436t-71e1e585c7f776ddd040101b70536d03cc53a4c9d5485ddf7b9dfcb6d43dcb53</cites><orcidid>0000-0002-6272-3242 ; 0000-0002-4758-0968 ; 0000-0002-6559-1513 ; 0000-0002-4479-4004 ; 0000-0001-7109-7047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Schuler, Manuel J.</creatorcontrib><creatorcontrib>Hofer, Thomas S.</creatorcontrib><creatorcontrib>Morisawa, Yusuke</creatorcontrib><creatorcontrib>Futami, Yoshisuke</creatorcontrib><creatorcontrib>Huck, Christian W.</creatorcontrib><creatorcontrib>Ozaki, Yukihiro</creatorcontrib><title>Solvation effects on wavenumbers and absorption intensities of the OH-stretch vibration in phenolic compounds – electrical- and mechanical anharmonicity via a combined DFT/Numerov approach</title><title>Physical chemistry chemical physics : PCCP</title><description>Previous measurements of fundamental, first-, second- and third overtones of the OH-stretching vibration of phenol and 2,6-difluoro-phenol by use of visible (Vis), near-infrared (NIR) and infrared (IR) spectroscopy revealed an oscillating pattern in the intensity quotient between the two kinds of solvents, carbon tetrachloride and n -hexane, upon increase of the vibrational quantum number, which could not be reproduced utilizing quantum mechanical calculations in implicit solvation. In the present study this phenomenon was successfully explained for the first time, employing an explicit consideration of solute–solvent interactions in combination with modern grid-based methods to solve the time-independent Schrödinger equation. The capabilities of this framework of (i) not requiring any assumptions on the form of the resulting wave function, (ii) focusing the description on the vibrational mode of interest and (iii) taking solute–solvent interactions explicitly into account are a particularly lucid example of the advantages in applying state-of-the-art approaches in investigations of challenging vibrational quantum problems. The property of grid-based methods being directly applied onto any given potential energy grid together with point (i) enable to analyse the impact of mechanical- and electrical anharmonicity independently. Especially the detailed investigation of the latter contribution when moving from a harmonic to an anharmonic potential in conjunction with the explicit consideration of solvent effects at the example of an actual chemical system ( i.e. not discussing these effects employing mere model potentials) demonstrate the manifold benefit achieved using the applied DFT/Numerov strategy.</description><subject>Anharmonicity</subject><subject>Carbon tetrachloride</subject><subject>Electric power grids</subject><subject>Impact analysis</subject><subject>Infrared spectroscopy</subject><subject>Phenols</subject><subject>Potential energy</subject><subject>Quantum mechanics</subject><subject>Quotients</subject><subject>Schrodinger equation</subject><subject>Solvation</subject><subject>Solvents</subject><subject>Vibration</subject><subject>Wave functions</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkU1qHDEQhRtjg383PoEgmxBojxRJ_bMMk4wdMtgGz75Rl6ppOd1SR1JP8C538H18GJ8kmrHJIpuqevDVewWVZZeMXjHK6wXUMFEpa_HzIDthouB5TStx-G8ui-PsNIRHSimTjJ9kLw9u2KponCXYdQgxkDT-Vlu089iiD0RZTVQbnJ_2lLERbTDRYCI7Enskdzd5iB4j9GRrWq_eOTL1aN1ggIAbJzdbHcjrn2eCQ4rxBtSQ781HhF7ZnU6yV350SZj4lMwUUbvl1ljU5Otqs7idR_RuS9Q0eaegP8-OOjUEvHjvZ9lm9W2zvMnXd9ffl1_WOQhexLxkyFBWEsquLAutNRWUUdaWVPJCUw4guRJQaykqqXVXtrXuoC204Bpayc-yj2-2KfXXjCE2owmAw6Asujk0nwWtJJeSsoR--A99dLO36bhEMV6VPNVEfXqjwLsQPHbN5M2o_FPDaLP7ZLOsl_f7T_7gfwHhqpZO</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Schuler, Manuel J.</creator><creator>Hofer, Thomas S.</creator><creator>Morisawa, Yusuke</creator><creator>Futami, Yoshisuke</creator><creator>Huck, Christian W.</creator><creator>Ozaki, Yukihiro</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6272-3242</orcidid><orcidid>https://orcid.org/0000-0002-4758-0968</orcidid><orcidid>https://orcid.org/0000-0002-6559-1513</orcidid><orcidid>https://orcid.org/0000-0002-4479-4004</orcidid><orcidid>https://orcid.org/0000-0001-7109-7047</orcidid></search><sort><creationdate>20200101</creationdate><title>Solvation effects on wavenumbers and absorption intensities of the OH-stretch vibration in phenolic compounds – electrical- and mechanical anharmonicity via a combined DFT/Numerov approach</title><author>Schuler, Manuel J. ; Hofer, Thomas S. ; Morisawa, Yusuke ; Futami, Yoshisuke ; Huck, Christian W. ; Ozaki, Yukihiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-71e1e585c7f776ddd040101b70536d03cc53a4c9d5485ddf7b9dfcb6d43dcb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anharmonicity</topic><topic>Carbon tetrachloride</topic><topic>Electric power grids</topic><topic>Impact analysis</topic><topic>Infrared spectroscopy</topic><topic>Phenols</topic><topic>Potential energy</topic><topic>Quantum mechanics</topic><topic>Quotients</topic><topic>Schrodinger equation</topic><topic>Solvation</topic><topic>Solvents</topic><topic>Vibration</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schuler, Manuel J.</creatorcontrib><creatorcontrib>Hofer, Thomas S.</creatorcontrib><creatorcontrib>Morisawa, Yusuke</creatorcontrib><creatorcontrib>Futami, Yoshisuke</creatorcontrib><creatorcontrib>Huck, Christian W.</creatorcontrib><creatorcontrib>Ozaki, Yukihiro</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schuler, Manuel J.</au><au>Hofer, Thomas S.</au><au>Morisawa, Yusuke</au><au>Futami, Yoshisuke</au><au>Huck, Christian W.</au><au>Ozaki, Yukihiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solvation effects on wavenumbers and absorption intensities of the OH-stretch vibration in phenolic compounds – electrical- and mechanical anharmonicity via a combined DFT/Numerov approach</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>22</volume><issue>23</issue><spage>13017</spage><epage>13029</epage><pages>13017-13029</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Previous measurements of fundamental, first-, second- and third overtones of the OH-stretching vibration of phenol and 2,6-difluoro-phenol by use of visible (Vis), near-infrared (NIR) and infrared (IR) spectroscopy revealed an oscillating pattern in the intensity quotient between the two kinds of solvents, carbon tetrachloride and n -hexane, upon increase of the vibrational quantum number, which could not be reproduced utilizing quantum mechanical calculations in implicit solvation. In the present study this phenomenon was successfully explained for the first time, employing an explicit consideration of solute–solvent interactions in combination with modern grid-based methods to solve the time-independent Schrödinger equation. The capabilities of this framework of (i) not requiring any assumptions on the form of the resulting wave function, (ii) focusing the description on the vibrational mode of interest and (iii) taking solute–solvent interactions explicitly into account are a particularly lucid example of the advantages in applying state-of-the-art approaches in investigations of challenging vibrational quantum problems. The property of grid-based methods being directly applied onto any given potential energy grid together with point (i) enable to analyse the impact of mechanical- and electrical anharmonicity independently. Especially the detailed investigation of the latter contribution when moving from a harmonic to an anharmonic potential in conjunction with the explicit consideration of solvent effects at the example of an actual chemical system ( i.e. not discussing these effects employing mere model potentials) demonstrate the manifold benefit achieved using the applied DFT/Numerov strategy.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9cp05594k</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6272-3242</orcidid><orcidid>https://orcid.org/0000-0002-4758-0968</orcidid><orcidid>https://orcid.org/0000-0002-6559-1513</orcidid><orcidid>https://orcid.org/0000-0002-4479-4004</orcidid><orcidid>https://orcid.org/0000-0001-7109-7047</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2020-01, Vol.22 (23), p.13017-13029
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_2408535501
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Anharmonicity
Carbon tetrachloride
Electric power grids
Impact analysis
Infrared spectroscopy
Phenols
Potential energy
Quantum mechanics
Quotients
Schrodinger equation
Solvation
Solvents
Vibration
Wave functions
title Solvation effects on wavenumbers and absorption intensities of the OH-stretch vibration in phenolic compounds – electrical- and mechanical anharmonicity via a combined DFT/Numerov approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A49%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solvation%20effects%20on%20wavenumbers%20and%20absorption%20intensities%20of%20the%20OH-stretch%20vibration%20in%20phenolic%20compounds%20%E2%80%93%20electrical-%20and%20mechanical%20anharmonicity%20via%20a%20combined%20DFT/Numerov%20approach&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Schuler,%20Manuel%20J.&rft.date=2020-01-01&rft.volume=22&rft.issue=23&rft.spage=13017&rft.epage=13029&rft.pages=13017-13029&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c9cp05594k&rft_dat=%3Cproquest_cross%3E2408535501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2413873413&rft_id=info:pmid/&rfr_iscdi=true