Use of artificial intelligence for detection of gastric lesions by magnetically controlled capsule endoscopy

Magnetically controlled capsule endoscopy (MCE) has become an efficient diagnostic modality for gastric diseases. We developed a novel automatic gastric lesion detection system to assist in diagnosis and reduce inter-physician variations. This study aimed to evaluate the diagnostic capability of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gastrointestinal endoscopy 2021-01, Vol.93 (1), p.133-139.e4
Hauptverfasser: Xia, Ji, Xia, Tian, Pan, Jun, Gao, Fei, Wang, Shuang, Qian, Yang-Yang, Wang, Heng, Zhao, Jie, Jiang, Xi, Zou, Wen-Bin, Wang, Yuan-Chen, Zhou, Wei, Li, Zhao-Shen, Liao, Zhuan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 139.e4
container_issue 1
container_start_page 133
container_title Gastrointestinal endoscopy
container_volume 93
creator Xia, Ji
Xia, Tian
Pan, Jun
Gao, Fei
Wang, Shuang
Qian, Yang-Yang
Wang, Heng
Zhao, Jie
Jiang, Xi
Zou, Wen-Bin
Wang, Yuan-Chen
Zhou, Wei
Li, Zhao-Shen
Liao, Zhuan
description Magnetically controlled capsule endoscopy (MCE) has become an efficient diagnostic modality for gastric diseases. We developed a novel automatic gastric lesion detection system to assist in diagnosis and reduce inter-physician variations. This study aimed to evaluate the diagnostic capability of the computer-aided detection system for MCE images. We developed a novel automatic gastric lesion detection system based on a convolutional neural network (CNN) and faster region-based convolutional neural network (RCNN). A total of 1,023,955 MCE images from 797 patients were used to train and test the system. These images were divided into 7 categories (erosion, polyp, ulcer, submucosal tumor, xanthoma, normal mucosa, and invalid images). The primary endpoint was the sensitivity of the system. The system detected gastric focal lesions with 96.2% sensitivity (95% confidence interval [CI], 95.7%-96.5%), 76.2% specificity (95% CI, 75.97%-76.3%), 16.0% positive predictive value (95% CI, 15.7%-16.3%), 99.7% negative predictive value (95% CI, 99.74%-99.79%), and 77.1% accuracy (95% CI, 76.9%-77.3%) (sensitivity was 99.3% for erosions; 96.5% for polyps; 89.3% for ulcers; 87.2% for submucosal tumors; 90.6% for xanthomas; 67.8% for normal; and 96.1% for invalid images). Analysis of the receiver operating characteristic curve showed that the area under the curve for all positive images was 0.84. Image processing time was 44 milliseconds per image for the system and 0.38 ± 0.29 seconds per image for clinicians (P < .001). The kappa value of 2 times repeated reads was 1. The CNN faster-RCNN-based diagnostic program system showed good performance in diagnosing gastric focal lesions in MCE images.
doi_str_mv 10.1016/j.gie.2020.05.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2408207069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016510720343625</els_id><sourcerecordid>2408207069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-a2d20b0d40d38ecd02ec0c07240b57ce8640a27a826c5d860e26e1b7b8a837773</originalsourceid><addsrcrecordid>eNp9kEtrGzEUhUVoSJzHD8imaNnNTK80D83QVQltUjB006yF5uqOkZFHriQX_O8rY7fLrC5cvnPgfIw9CagFiP7ztt44qiVIqKGrQaorthIwqqpXavzAVlCgqhOgbtldSlsAGGQjbthtI1sFrexXzL8l4mHmJmY3O3TGc7dk8t5taEHic4jcUibMLiwncGNSjg65p1Q-iU9HvjObhbJD4_2RY1hyDN6T5Wj26eCJ02JDwrA_PrDr2fhEj5d7z96-f_v1_Fqtf778eP66rrAVY66MtBImsC3YZiC0IAkBQckWpk4hDX0LRiozyB47O_RAsicxqWkwQ6OUau7Zp3PvPobfB0pZ71zCMsosFA5Jl6JBgoJ-LKg4oxhDSpFmvY9uZ-JRC9AnyXqri2R9kqyh00VyyXy81B-mHdn_iX9WC_DlDFAZ-cdR1AndSad1sZjUNrh36v8C6zSOTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408207069</pqid></control><display><type>article</type><title>Use of artificial intelligence for detection of gastric lesions by magnetically controlled capsule endoscopy</title><source>Elsevier ScienceDirect Journals</source><creator>Xia, Ji ; Xia, Tian ; Pan, Jun ; Gao, Fei ; Wang, Shuang ; Qian, Yang-Yang ; Wang, Heng ; Zhao, Jie ; Jiang, Xi ; Zou, Wen-Bin ; Wang, Yuan-Chen ; Zhou, Wei ; Li, Zhao-Shen ; Liao, Zhuan</creator><creatorcontrib>Xia, Ji ; Xia, Tian ; Pan, Jun ; Gao, Fei ; Wang, Shuang ; Qian, Yang-Yang ; Wang, Heng ; Zhao, Jie ; Jiang, Xi ; Zou, Wen-Bin ; Wang, Yuan-Chen ; Zhou, Wei ; Li, Zhao-Shen ; Liao, Zhuan</creatorcontrib><description>Magnetically controlled capsule endoscopy (MCE) has become an efficient diagnostic modality for gastric diseases. We developed a novel automatic gastric lesion detection system to assist in diagnosis and reduce inter-physician variations. This study aimed to evaluate the diagnostic capability of the computer-aided detection system for MCE images. We developed a novel automatic gastric lesion detection system based on a convolutional neural network (CNN) and faster region-based convolutional neural network (RCNN). A total of 1,023,955 MCE images from 797 patients were used to train and test the system. These images were divided into 7 categories (erosion, polyp, ulcer, submucosal tumor, xanthoma, normal mucosa, and invalid images). The primary endpoint was the sensitivity of the system. The system detected gastric focal lesions with 96.2% sensitivity (95% confidence interval [CI], 95.7%-96.5%), 76.2% specificity (95% CI, 75.97%-76.3%), 16.0% positive predictive value (95% CI, 15.7%-16.3%), 99.7% negative predictive value (95% CI, 99.74%-99.79%), and 77.1% accuracy (95% CI, 76.9%-77.3%) (sensitivity was 99.3% for erosions; 96.5% for polyps; 89.3% for ulcers; 87.2% for submucosal tumors; 90.6% for xanthomas; 67.8% for normal; and 96.1% for invalid images). Analysis of the receiver operating characteristic curve showed that the area under the curve for all positive images was 0.84. Image processing time was 44 milliseconds per image for the system and 0.38 ± 0.29 seconds per image for clinicians (P &lt; .001). The kappa value of 2 times repeated reads was 1. The CNN faster-RCNN-based diagnostic program system showed good performance in diagnosing gastric focal lesions in MCE images.</description><identifier>ISSN: 0016-5107</identifier><identifier>EISSN: 1097-6779</identifier><identifier>DOI: 10.1016/j.gie.2020.05.027</identifier><identifier>PMID: 32470426</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><ispartof>Gastrointestinal endoscopy, 2021-01, Vol.93 (1), p.133-139.e4</ispartof><rights>2021 American Society for Gastrointestinal Endoscopy</rights><rights>Copyright © 2021 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-a2d20b0d40d38ecd02ec0c07240b57ce8640a27a826c5d860e26e1b7b8a837773</citedby><cites>FETCH-LOGICAL-c419t-a2d20b0d40d38ecd02ec0c07240b57ce8640a27a826c5d860e26e1b7b8a837773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016510720343625$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32470426$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xia, Ji</creatorcontrib><creatorcontrib>Xia, Tian</creatorcontrib><creatorcontrib>Pan, Jun</creatorcontrib><creatorcontrib>Gao, Fei</creatorcontrib><creatorcontrib>Wang, Shuang</creatorcontrib><creatorcontrib>Qian, Yang-Yang</creatorcontrib><creatorcontrib>Wang, Heng</creatorcontrib><creatorcontrib>Zhao, Jie</creatorcontrib><creatorcontrib>Jiang, Xi</creatorcontrib><creatorcontrib>Zou, Wen-Bin</creatorcontrib><creatorcontrib>Wang, Yuan-Chen</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Li, Zhao-Shen</creatorcontrib><creatorcontrib>Liao, Zhuan</creatorcontrib><title>Use of artificial intelligence for detection of gastric lesions by magnetically controlled capsule endoscopy</title><title>Gastrointestinal endoscopy</title><addtitle>Gastrointest Endosc</addtitle><description>Magnetically controlled capsule endoscopy (MCE) has become an efficient diagnostic modality for gastric diseases. We developed a novel automatic gastric lesion detection system to assist in diagnosis and reduce inter-physician variations. This study aimed to evaluate the diagnostic capability of the computer-aided detection system for MCE images. We developed a novel automatic gastric lesion detection system based on a convolutional neural network (CNN) and faster region-based convolutional neural network (RCNN). A total of 1,023,955 MCE images from 797 patients were used to train and test the system. These images were divided into 7 categories (erosion, polyp, ulcer, submucosal tumor, xanthoma, normal mucosa, and invalid images). The primary endpoint was the sensitivity of the system. The system detected gastric focal lesions with 96.2% sensitivity (95% confidence interval [CI], 95.7%-96.5%), 76.2% specificity (95% CI, 75.97%-76.3%), 16.0% positive predictive value (95% CI, 15.7%-16.3%), 99.7% negative predictive value (95% CI, 99.74%-99.79%), and 77.1% accuracy (95% CI, 76.9%-77.3%) (sensitivity was 99.3% for erosions; 96.5% for polyps; 89.3% for ulcers; 87.2% for submucosal tumors; 90.6% for xanthomas; 67.8% for normal; and 96.1% for invalid images). Analysis of the receiver operating characteristic curve showed that the area under the curve for all positive images was 0.84. Image processing time was 44 milliseconds per image for the system and 0.38 ± 0.29 seconds per image for clinicians (P &lt; .001). The kappa value of 2 times repeated reads was 1. The CNN faster-RCNN-based diagnostic program system showed good performance in diagnosing gastric focal lesions in MCE images.</description><issn>0016-5107</issn><issn>1097-6779</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtrGzEUhUVoSJzHD8imaNnNTK80D83QVQltUjB006yF5uqOkZFHriQX_O8rY7fLrC5cvnPgfIw9CagFiP7ztt44qiVIqKGrQaorthIwqqpXavzAVlCgqhOgbtldSlsAGGQjbthtI1sFrexXzL8l4mHmJmY3O3TGc7dk8t5taEHic4jcUibMLiwncGNSjg65p1Q-iU9HvjObhbJD4_2RY1hyDN6T5Wj26eCJ02JDwrA_PrDr2fhEj5d7z96-f_v1_Fqtf778eP66rrAVY66MtBImsC3YZiC0IAkBQckWpk4hDX0LRiozyB47O_RAsicxqWkwQ6OUau7Zp3PvPobfB0pZ71zCMsosFA5Jl6JBgoJ-LKg4oxhDSpFmvY9uZ-JRC9AnyXqri2R9kqyh00VyyXy81B-mHdn_iX9WC_DlDFAZ-cdR1AndSad1sZjUNrh36v8C6zSOTg</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Xia, Ji</creator><creator>Xia, Tian</creator><creator>Pan, Jun</creator><creator>Gao, Fei</creator><creator>Wang, Shuang</creator><creator>Qian, Yang-Yang</creator><creator>Wang, Heng</creator><creator>Zhao, Jie</creator><creator>Jiang, Xi</creator><creator>Zou, Wen-Bin</creator><creator>Wang, Yuan-Chen</creator><creator>Zhou, Wei</creator><creator>Li, Zhao-Shen</creator><creator>Liao, Zhuan</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202101</creationdate><title>Use of artificial intelligence for detection of gastric lesions by magnetically controlled capsule endoscopy</title><author>Xia, Ji ; Xia, Tian ; Pan, Jun ; Gao, Fei ; Wang, Shuang ; Qian, Yang-Yang ; Wang, Heng ; Zhao, Jie ; Jiang, Xi ; Zou, Wen-Bin ; Wang, Yuan-Chen ; Zhou, Wei ; Li, Zhao-Shen ; Liao, Zhuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-a2d20b0d40d38ecd02ec0c07240b57ce8640a27a826c5d860e26e1b7b8a837773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Ji</creatorcontrib><creatorcontrib>Xia, Tian</creatorcontrib><creatorcontrib>Pan, Jun</creatorcontrib><creatorcontrib>Gao, Fei</creatorcontrib><creatorcontrib>Wang, Shuang</creatorcontrib><creatorcontrib>Qian, Yang-Yang</creatorcontrib><creatorcontrib>Wang, Heng</creatorcontrib><creatorcontrib>Zhao, Jie</creatorcontrib><creatorcontrib>Jiang, Xi</creatorcontrib><creatorcontrib>Zou, Wen-Bin</creatorcontrib><creatorcontrib>Wang, Yuan-Chen</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Li, Zhao-Shen</creatorcontrib><creatorcontrib>Liao, Zhuan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Gastrointestinal endoscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Ji</au><au>Xia, Tian</au><au>Pan, Jun</au><au>Gao, Fei</au><au>Wang, Shuang</au><au>Qian, Yang-Yang</au><au>Wang, Heng</au><au>Zhao, Jie</au><au>Jiang, Xi</au><au>Zou, Wen-Bin</au><au>Wang, Yuan-Chen</au><au>Zhou, Wei</au><au>Li, Zhao-Shen</au><au>Liao, Zhuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of artificial intelligence for detection of gastric lesions by magnetically controlled capsule endoscopy</atitle><jtitle>Gastrointestinal endoscopy</jtitle><addtitle>Gastrointest Endosc</addtitle><date>2021-01</date><risdate>2021</risdate><volume>93</volume><issue>1</issue><spage>133</spage><epage>139.e4</epage><pages>133-139.e4</pages><issn>0016-5107</issn><eissn>1097-6779</eissn><abstract>Magnetically controlled capsule endoscopy (MCE) has become an efficient diagnostic modality for gastric diseases. We developed a novel automatic gastric lesion detection system to assist in diagnosis and reduce inter-physician variations. This study aimed to evaluate the diagnostic capability of the computer-aided detection system for MCE images. We developed a novel automatic gastric lesion detection system based on a convolutional neural network (CNN) and faster region-based convolutional neural network (RCNN). A total of 1,023,955 MCE images from 797 patients were used to train and test the system. These images were divided into 7 categories (erosion, polyp, ulcer, submucosal tumor, xanthoma, normal mucosa, and invalid images). The primary endpoint was the sensitivity of the system. The system detected gastric focal lesions with 96.2% sensitivity (95% confidence interval [CI], 95.7%-96.5%), 76.2% specificity (95% CI, 75.97%-76.3%), 16.0% positive predictive value (95% CI, 15.7%-16.3%), 99.7% negative predictive value (95% CI, 99.74%-99.79%), and 77.1% accuracy (95% CI, 76.9%-77.3%) (sensitivity was 99.3% for erosions; 96.5% for polyps; 89.3% for ulcers; 87.2% for submucosal tumors; 90.6% for xanthomas; 67.8% for normal; and 96.1% for invalid images). Analysis of the receiver operating characteristic curve showed that the area under the curve for all positive images was 0.84. Image processing time was 44 milliseconds per image for the system and 0.38 ± 0.29 seconds per image for clinicians (P &lt; .001). The kappa value of 2 times repeated reads was 1. The CNN faster-RCNN-based diagnostic program system showed good performance in diagnosing gastric focal lesions in MCE images.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32470426</pmid><doi>10.1016/j.gie.2020.05.027</doi></addata></record>
fulltext fulltext
identifier ISSN: 0016-5107
ispartof Gastrointestinal endoscopy, 2021-01, Vol.93 (1), p.133-139.e4
issn 0016-5107
1097-6779
language eng
recordid cdi_proquest_miscellaneous_2408207069
source Elsevier ScienceDirect Journals
title Use of artificial intelligence for detection of gastric lesions by magnetically controlled capsule endoscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20artificial%20intelligence%20for%20detection%20of%20gastric%20lesions%20by%20magnetically%20controlled%20capsule%20endoscopy&rft.jtitle=Gastrointestinal%20endoscopy&rft.au=Xia,%20Ji&rft.date=2021-01&rft.volume=93&rft.issue=1&rft.spage=133&rft.epage=139.e4&rft.pages=133-139.e4&rft.issn=0016-5107&rft.eissn=1097-6779&rft_id=info:doi/10.1016/j.gie.2020.05.027&rft_dat=%3Cproquest_cross%3E2408207069%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2408207069&rft_id=info:pmid/32470426&rft_els_id=S0016510720343625&rfr_iscdi=true