Optimal leaf life strategies determine Vc,max dynamic during ontogeny
Summary Leaf photosynthetic properties, for example the maximum carboxylation velocity or Vc,max, change with leaf age due to ontogenetic processes. This study introduces an optimal dynamic allocation scheme to model changes in leaf‐level photosynthetic capacity as a function of leaf biochemical con...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2020-10, Vol.228 (1), p.361-375 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 375 |
---|---|
container_issue | 1 |
container_start_page | 361 |
container_title | The New phytologist |
container_volume | 228 |
creator | Detto, Matteo Xu, Xiangtao |
description | Summary
Leaf photosynthetic properties, for example the maximum carboxylation velocity or Vc,max, change with leaf age due to ontogenetic processes. This study introduces an optimal dynamic allocation scheme to model changes in leaf‐level photosynthetic capacity as a function of leaf biochemical constraints (costs of synthesis and defence), nitrogen availability and other environmental factors (e.g. light).
The model consists of a system of equations describing RuBisCO synthesis and degradation within chloroplasts, defence and ageing at leaf levels, nitrogen transfer and carbon budget at plant levels.
Model results show that optimal allocation principles explained RuBisCO dynamics with leaf age. An approximated analytical solution can reproduce the basic pattern of RuBisCO and Vc,max in rice and in two tropical tree species. The model also reveals leaf life complementarities that remained unexplained in previous approaches, as the interplay between Vc,max at maturation, life span and the decline in photosynthetic capacity with age. Furthermore, it explores the role of defence, which is not implemented in current models.
This framework covers some of the existing gaps in integrating multiple processes across plant organs (chloroplast, leaf and whole plant) and is a first‐step towards representing mechanistically leaf ontogenetic processes into physiological and ecosystem models. |
doi_str_mv | 10.1111/nph.16712 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2408202270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2408202270</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1712-5b2e3cc2462aeba04ae291be60e98e988bae363a137385fbe034b4cdb1d8ad853</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFYP_oMFLx5Mu1_Zbo5SqhWK9aDibdkkk7gl2cRsgubfu209OQzMe3gYXh6ErimZ0TBz137OqFxQdoImVMgkUpQvTtGEEKYiKeTHObrwfkcISWLJJmi1bXtbmwpXYApc2QKw7zvTQ2nB4xx66GrrAL9nd7X5wfnoTG0znA-ddSVuXN-U4MZLdFaYysPV352it4fV63IdbbaPT8v7TdTSUCmKUwY8y5iQzEBqiDDAEpqCJJCosCo1wCU3oTJXcZEC4SIVWZ7SXJlcxXyKbo9_2675GsD3urY-g6oyDprBayaIYoSxBQnozT901wydC-0CJYjYQzJQ8yP1bSsYddsFF92oKdF7mzrY1Aeb-vllfQj8F2QsaUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440422706</pqid></control><display><type>article</type><title>Optimal leaf life strategies determine Vc,max dynamic during ontogeny</title><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Detto, Matteo ; Xu, Xiangtao</creator><creatorcontrib>Detto, Matteo ; Xu, Xiangtao</creatorcontrib><description>Summary
Leaf photosynthetic properties, for example the maximum carboxylation velocity or Vc,max, change with leaf age due to ontogenetic processes. This study introduces an optimal dynamic allocation scheme to model changes in leaf‐level photosynthetic capacity as a function of leaf biochemical constraints (costs of synthesis and defence), nitrogen availability and other environmental factors (e.g. light).
The model consists of a system of equations describing RuBisCO synthesis and degradation within chloroplasts, defence and ageing at leaf levels, nitrogen transfer and carbon budget at plant levels.
Model results show that optimal allocation principles explained RuBisCO dynamics with leaf age. An approximated analytical solution can reproduce the basic pattern of RuBisCO and Vc,max in rice and in two tropical tree species. The model also reveals leaf life complementarities that remained unexplained in previous approaches, as the interplay between Vc,max at maturation, life span and the decline in photosynthetic capacity with age. Furthermore, it explores the role of defence, which is not implemented in current models.
This framework covers some of the existing gaps in integrating multiple processes across plant organs (chloroplast, leaf and whole plant) and is a first‐step towards representing mechanistically leaf ontogenetic processes into physiological and ecosystem models.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.16712</identifier><language>eng</language><publisher>Lancaster: Wiley Subscription Services, Inc</publisher><subject>Age ; Ageing ; Aging ; Biodegradation ; Body organs ; Carboxylation ; Chloroplasts ; cost–benefit analysis ; defence ; Ecosystem models ; Environment models ; Environmental changes ; Environmental factors ; Exact solutions ; leaf age ; leaf ontogeny ; Leaves ; Life span ; maximum carboxylation velocity ; Nitrogen ; Ontogeny ; optimal control ; Organs ; Photosynthesis ; Plant organs ; Plants ; Ribulose-bisphosphate carboxylase ; RuBisCO ; Tropical climate</subject><ispartof>The New phytologist, 2020-10, Vol.228 (1), p.361-375</ispartof><rights>2020 The Authors New Phytologist © 2020 New Phytologist Trust</rights><rights>Copyright © 2020 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0494-188X ; 0000-0002-9402-9474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnph.16712$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnph.16712$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Detto, Matteo</creatorcontrib><creatorcontrib>Xu, Xiangtao</creatorcontrib><title>Optimal leaf life strategies determine Vc,max dynamic during ontogeny</title><title>The New phytologist</title><description>Summary
Leaf photosynthetic properties, for example the maximum carboxylation velocity or Vc,max, change with leaf age due to ontogenetic processes. This study introduces an optimal dynamic allocation scheme to model changes in leaf‐level photosynthetic capacity as a function of leaf biochemical constraints (costs of synthesis and defence), nitrogen availability and other environmental factors (e.g. light).
The model consists of a system of equations describing RuBisCO synthesis and degradation within chloroplasts, defence and ageing at leaf levels, nitrogen transfer and carbon budget at plant levels.
Model results show that optimal allocation principles explained RuBisCO dynamics with leaf age. An approximated analytical solution can reproduce the basic pattern of RuBisCO and Vc,max in rice and in two tropical tree species. The model also reveals leaf life complementarities that remained unexplained in previous approaches, as the interplay between Vc,max at maturation, life span and the decline in photosynthetic capacity with age. Furthermore, it explores the role of defence, which is not implemented in current models.
This framework covers some of the existing gaps in integrating multiple processes across plant organs (chloroplast, leaf and whole plant) and is a first‐step towards representing mechanistically leaf ontogenetic processes into physiological and ecosystem models.</description><subject>Age</subject><subject>Ageing</subject><subject>Aging</subject><subject>Biodegradation</subject><subject>Body organs</subject><subject>Carboxylation</subject><subject>Chloroplasts</subject><subject>cost–benefit analysis</subject><subject>defence</subject><subject>Ecosystem models</subject><subject>Environment models</subject><subject>Environmental changes</subject><subject>Environmental factors</subject><subject>Exact solutions</subject><subject>leaf age</subject><subject>leaf ontogeny</subject><subject>Leaves</subject><subject>Life span</subject><subject>maximum carboxylation velocity</subject><subject>Nitrogen</subject><subject>Ontogeny</subject><subject>optimal control</subject><subject>Organs</subject><subject>Photosynthesis</subject><subject>Plant organs</subject><subject>Plants</subject><subject>Ribulose-bisphosphate carboxylase</subject><subject>RuBisCO</subject><subject>Tropical climate</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRsFYP_oMFLx5Mu1_Zbo5SqhWK9aDibdkkk7gl2cRsgubfu209OQzMe3gYXh6ErimZ0TBz137OqFxQdoImVMgkUpQvTtGEEKYiKeTHObrwfkcISWLJJmi1bXtbmwpXYApc2QKw7zvTQ2nB4xx66GrrAL9nd7X5wfnoTG0znA-ddSVuXN-U4MZLdFaYysPV352it4fV63IdbbaPT8v7TdTSUCmKUwY8y5iQzEBqiDDAEpqCJJCosCo1wCU3oTJXcZEC4SIVWZ7SXJlcxXyKbo9_2675GsD3urY-g6oyDprBayaIYoSxBQnozT901wydC-0CJYjYQzJQ8yP1bSsYddsFF92oKdF7mzrY1Aeb-vllfQj8F2QsaUg</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Detto, Matteo</creator><creator>Xu, Xiangtao</creator><general>Wiley Subscription Services, Inc</general><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0494-188X</orcidid><orcidid>https://orcid.org/0000-0002-9402-9474</orcidid></search><sort><creationdate>202010</creationdate><title>Optimal leaf life strategies determine Vc,max dynamic during ontogeny</title><author>Detto, Matteo ; Xu, Xiangtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1712-5b2e3cc2462aeba04ae291be60e98e988bae363a137385fbe034b4cdb1d8ad853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Age</topic><topic>Ageing</topic><topic>Aging</topic><topic>Biodegradation</topic><topic>Body organs</topic><topic>Carboxylation</topic><topic>Chloroplasts</topic><topic>cost–benefit analysis</topic><topic>defence</topic><topic>Ecosystem models</topic><topic>Environment models</topic><topic>Environmental changes</topic><topic>Environmental factors</topic><topic>Exact solutions</topic><topic>leaf age</topic><topic>leaf ontogeny</topic><topic>Leaves</topic><topic>Life span</topic><topic>maximum carboxylation velocity</topic><topic>Nitrogen</topic><topic>Ontogeny</topic><topic>optimal control</topic><topic>Organs</topic><topic>Photosynthesis</topic><topic>Plant organs</topic><topic>Plants</topic><topic>Ribulose-bisphosphate carboxylase</topic><topic>RuBisCO</topic><topic>Tropical climate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Detto, Matteo</creatorcontrib><creatorcontrib>Xu, Xiangtao</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Detto, Matteo</au><au>Xu, Xiangtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal leaf life strategies determine Vc,max dynamic during ontogeny</atitle><jtitle>The New phytologist</jtitle><date>2020-10</date><risdate>2020</risdate><volume>228</volume><issue>1</issue><spage>361</spage><epage>375</epage><pages>361-375</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Summary
Leaf photosynthetic properties, for example the maximum carboxylation velocity or Vc,max, change with leaf age due to ontogenetic processes. This study introduces an optimal dynamic allocation scheme to model changes in leaf‐level photosynthetic capacity as a function of leaf biochemical constraints (costs of synthesis and defence), nitrogen availability and other environmental factors (e.g. light).
The model consists of a system of equations describing RuBisCO synthesis and degradation within chloroplasts, defence and ageing at leaf levels, nitrogen transfer and carbon budget at plant levels.
Model results show that optimal allocation principles explained RuBisCO dynamics with leaf age. An approximated analytical solution can reproduce the basic pattern of RuBisCO and Vc,max in rice and in two tropical tree species. The model also reveals leaf life complementarities that remained unexplained in previous approaches, as the interplay between Vc,max at maturation, life span and the decline in photosynthetic capacity with age. Furthermore, it explores the role of defence, which is not implemented in current models.
This framework covers some of the existing gaps in integrating multiple processes across plant organs (chloroplast, leaf and whole plant) and is a first‐step towards representing mechanistically leaf ontogenetic processes into physiological and ecosystem models.</abstract><cop>Lancaster</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/nph.16712</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0494-188X</orcidid><orcidid>https://orcid.org/0000-0002-9402-9474</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2020-10, Vol.228 (1), p.361-375 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_proquest_miscellaneous_2408202270 |
source | Wiley Online Library Free Content; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals |
subjects | Age Ageing Aging Biodegradation Body organs Carboxylation Chloroplasts cost–benefit analysis defence Ecosystem models Environment models Environmental changes Environmental factors Exact solutions leaf age leaf ontogeny Leaves Life span maximum carboxylation velocity Nitrogen Ontogeny optimal control Organs Photosynthesis Plant organs Plants Ribulose-bisphosphate carboxylase RuBisCO Tropical climate |
title | Optimal leaf life strategies determine Vc,max dynamic during ontogeny |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A13%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20leaf%20life%20strategies%20determine%20Vc,max%20dynamic%20during%20ontogeny&rft.jtitle=The%20New%20phytologist&rft.au=Detto,%20Matteo&rft.date=2020-10&rft.volume=228&rft.issue=1&rft.spage=361&rft.epage=375&rft.pages=361-375&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.16712&rft_dat=%3Cproquest_wiley%3E2408202270%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440422706&rft_id=info:pmid/&rfr_iscdi=true |