Optimal leaf life strategies determine Vc,max dynamic during ontogeny

Summary Leaf photosynthetic properties, for example the maximum carboxylation velocity or Vc,max, change with leaf age due to ontogenetic processes. This study introduces an optimal dynamic allocation scheme to model changes in leaf‐level photosynthetic capacity as a function of leaf biochemical con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2020-10, Vol.228 (1), p.361-375
Hauptverfasser: Detto, Matteo, Xu, Xiangtao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 375
container_issue 1
container_start_page 361
container_title The New phytologist
container_volume 228
creator Detto, Matteo
Xu, Xiangtao
description Summary Leaf photosynthetic properties, for example the maximum carboxylation velocity or Vc,max, change with leaf age due to ontogenetic processes. This study introduces an optimal dynamic allocation scheme to model changes in leaf‐level photosynthetic capacity as a function of leaf biochemical constraints (costs of synthesis and defence), nitrogen availability and other environmental factors (e.g. light). The model consists of a system of equations describing RuBisCO synthesis and degradation within chloroplasts, defence and ageing at leaf levels, nitrogen transfer and carbon budget at plant levels. Model results show that optimal allocation principles explained RuBisCO dynamics with leaf age. An approximated analytical solution can reproduce the basic pattern of RuBisCO and Vc,max in rice and in two tropical tree species. The model also reveals leaf life complementarities that remained unexplained in previous approaches, as the interplay between Vc,max at maturation, life span and the decline in photosynthetic capacity with age. Furthermore, it explores the role of defence, which is not implemented in current models. This framework covers some of the existing gaps in integrating multiple processes across plant organs (chloroplast, leaf and whole plant) and is a first‐step towards representing mechanistically leaf ontogenetic processes into physiological and ecosystem models.
doi_str_mv 10.1111/nph.16712
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2408202270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2408202270</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1712-5b2e3cc2462aeba04ae291be60e98e988bae363a137385fbe034b4cdb1d8ad853</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFYP_oMFLx5Mu1_Zbo5SqhWK9aDibdkkk7gl2cRsgubfu209OQzMe3gYXh6ErimZ0TBz137OqFxQdoImVMgkUpQvTtGEEKYiKeTHObrwfkcISWLJJmi1bXtbmwpXYApc2QKw7zvTQ2nB4xx66GrrAL9nd7X5wfnoTG0znA-ddSVuXN-U4MZLdFaYysPV352it4fV63IdbbaPT8v7TdTSUCmKUwY8y5iQzEBqiDDAEpqCJJCosCo1wCU3oTJXcZEC4SIVWZ7SXJlcxXyKbo9_2675GsD3urY-g6oyDprBayaIYoSxBQnozT901wydC-0CJYjYQzJQ8yP1bSsYddsFF92oKdF7mzrY1Aeb-vllfQj8F2QsaUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440422706</pqid></control><display><type>article</type><title>Optimal leaf life strategies determine Vc,max dynamic during ontogeny</title><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Detto, Matteo ; Xu, Xiangtao</creator><creatorcontrib>Detto, Matteo ; Xu, Xiangtao</creatorcontrib><description>Summary Leaf photosynthetic properties, for example the maximum carboxylation velocity or Vc,max, change with leaf age due to ontogenetic processes. This study introduces an optimal dynamic allocation scheme to model changes in leaf‐level photosynthetic capacity as a function of leaf biochemical constraints (costs of synthesis and defence), nitrogen availability and other environmental factors (e.g. light). The model consists of a system of equations describing RuBisCO synthesis and degradation within chloroplasts, defence and ageing at leaf levels, nitrogen transfer and carbon budget at plant levels. Model results show that optimal allocation principles explained RuBisCO dynamics with leaf age. An approximated analytical solution can reproduce the basic pattern of RuBisCO and Vc,max in rice and in two tropical tree species. The model also reveals leaf life complementarities that remained unexplained in previous approaches, as the interplay between Vc,max at maturation, life span and the decline in photosynthetic capacity with age. Furthermore, it explores the role of defence, which is not implemented in current models. This framework covers some of the existing gaps in integrating multiple processes across plant organs (chloroplast, leaf and whole plant) and is a first‐step towards representing mechanistically leaf ontogenetic processes into physiological and ecosystem models.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.16712</identifier><language>eng</language><publisher>Lancaster: Wiley Subscription Services, Inc</publisher><subject>Age ; Ageing ; Aging ; Biodegradation ; Body organs ; Carboxylation ; Chloroplasts ; cost–benefit analysis ; defence ; Ecosystem models ; Environment models ; Environmental changes ; Environmental factors ; Exact solutions ; leaf age ; leaf ontogeny ; Leaves ; Life span ; maximum carboxylation velocity ; Nitrogen ; Ontogeny ; optimal control ; Organs ; Photosynthesis ; Plant organs ; Plants ; Ribulose-bisphosphate carboxylase ; RuBisCO ; Tropical climate</subject><ispartof>The New phytologist, 2020-10, Vol.228 (1), p.361-375</ispartof><rights>2020 The Authors New Phytologist © 2020 New Phytologist Trust</rights><rights>Copyright © 2020 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0494-188X ; 0000-0002-9402-9474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnph.16712$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnph.16712$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Detto, Matteo</creatorcontrib><creatorcontrib>Xu, Xiangtao</creatorcontrib><title>Optimal leaf life strategies determine Vc,max dynamic during ontogeny</title><title>The New phytologist</title><description>Summary Leaf photosynthetic properties, for example the maximum carboxylation velocity or Vc,max, change with leaf age due to ontogenetic processes. This study introduces an optimal dynamic allocation scheme to model changes in leaf‐level photosynthetic capacity as a function of leaf biochemical constraints (costs of synthesis and defence), nitrogen availability and other environmental factors (e.g. light). The model consists of a system of equations describing RuBisCO synthesis and degradation within chloroplasts, defence and ageing at leaf levels, nitrogen transfer and carbon budget at plant levels. Model results show that optimal allocation principles explained RuBisCO dynamics with leaf age. An approximated analytical solution can reproduce the basic pattern of RuBisCO and Vc,max in rice and in two tropical tree species. The model also reveals leaf life complementarities that remained unexplained in previous approaches, as the interplay between Vc,max at maturation, life span and the decline in photosynthetic capacity with age. Furthermore, it explores the role of defence, which is not implemented in current models. This framework covers some of the existing gaps in integrating multiple processes across plant organs (chloroplast, leaf and whole plant) and is a first‐step towards representing mechanistically leaf ontogenetic processes into physiological and ecosystem models.</description><subject>Age</subject><subject>Ageing</subject><subject>Aging</subject><subject>Biodegradation</subject><subject>Body organs</subject><subject>Carboxylation</subject><subject>Chloroplasts</subject><subject>cost–benefit analysis</subject><subject>defence</subject><subject>Ecosystem models</subject><subject>Environment models</subject><subject>Environmental changes</subject><subject>Environmental factors</subject><subject>Exact solutions</subject><subject>leaf age</subject><subject>leaf ontogeny</subject><subject>Leaves</subject><subject>Life span</subject><subject>maximum carboxylation velocity</subject><subject>Nitrogen</subject><subject>Ontogeny</subject><subject>optimal control</subject><subject>Organs</subject><subject>Photosynthesis</subject><subject>Plant organs</subject><subject>Plants</subject><subject>Ribulose-bisphosphate carboxylase</subject><subject>RuBisCO</subject><subject>Tropical climate</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRsFYP_oMFLx5Mu1_Zbo5SqhWK9aDibdkkk7gl2cRsgubfu209OQzMe3gYXh6ErimZ0TBz137OqFxQdoImVMgkUpQvTtGEEKYiKeTHObrwfkcISWLJJmi1bXtbmwpXYApc2QKw7zvTQ2nB4xx66GrrAL9nd7X5wfnoTG0znA-ddSVuXN-U4MZLdFaYysPV352it4fV63IdbbaPT8v7TdTSUCmKUwY8y5iQzEBqiDDAEpqCJJCosCo1wCU3oTJXcZEC4SIVWZ7SXJlcxXyKbo9_2675GsD3urY-g6oyDprBayaIYoSxBQnozT901wydC-0CJYjYQzJQ8yP1bSsYddsFF92oKdF7mzrY1Aeb-vllfQj8F2QsaUg</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Detto, Matteo</creator><creator>Xu, Xiangtao</creator><general>Wiley Subscription Services, Inc</general><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0494-188X</orcidid><orcidid>https://orcid.org/0000-0002-9402-9474</orcidid></search><sort><creationdate>202010</creationdate><title>Optimal leaf life strategies determine Vc,max dynamic during ontogeny</title><author>Detto, Matteo ; Xu, Xiangtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1712-5b2e3cc2462aeba04ae291be60e98e988bae363a137385fbe034b4cdb1d8ad853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Age</topic><topic>Ageing</topic><topic>Aging</topic><topic>Biodegradation</topic><topic>Body organs</topic><topic>Carboxylation</topic><topic>Chloroplasts</topic><topic>cost–benefit analysis</topic><topic>defence</topic><topic>Ecosystem models</topic><topic>Environment models</topic><topic>Environmental changes</topic><topic>Environmental factors</topic><topic>Exact solutions</topic><topic>leaf age</topic><topic>leaf ontogeny</topic><topic>Leaves</topic><topic>Life span</topic><topic>maximum carboxylation velocity</topic><topic>Nitrogen</topic><topic>Ontogeny</topic><topic>optimal control</topic><topic>Organs</topic><topic>Photosynthesis</topic><topic>Plant organs</topic><topic>Plants</topic><topic>Ribulose-bisphosphate carboxylase</topic><topic>RuBisCO</topic><topic>Tropical climate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Detto, Matteo</creatorcontrib><creatorcontrib>Xu, Xiangtao</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Detto, Matteo</au><au>Xu, Xiangtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal leaf life strategies determine Vc,max dynamic during ontogeny</atitle><jtitle>The New phytologist</jtitle><date>2020-10</date><risdate>2020</risdate><volume>228</volume><issue>1</issue><spage>361</spage><epage>375</epage><pages>361-375</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Summary Leaf photosynthetic properties, for example the maximum carboxylation velocity or Vc,max, change with leaf age due to ontogenetic processes. This study introduces an optimal dynamic allocation scheme to model changes in leaf‐level photosynthetic capacity as a function of leaf biochemical constraints (costs of synthesis and defence), nitrogen availability and other environmental factors (e.g. light). The model consists of a system of equations describing RuBisCO synthesis and degradation within chloroplasts, defence and ageing at leaf levels, nitrogen transfer and carbon budget at plant levels. Model results show that optimal allocation principles explained RuBisCO dynamics with leaf age. An approximated analytical solution can reproduce the basic pattern of RuBisCO and Vc,max in rice and in two tropical tree species. The model also reveals leaf life complementarities that remained unexplained in previous approaches, as the interplay between Vc,max at maturation, life span and the decline in photosynthetic capacity with age. Furthermore, it explores the role of defence, which is not implemented in current models. This framework covers some of the existing gaps in integrating multiple processes across plant organs (chloroplast, leaf and whole plant) and is a first‐step towards representing mechanistically leaf ontogenetic processes into physiological and ecosystem models.</abstract><cop>Lancaster</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/nph.16712</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0494-188X</orcidid><orcidid>https://orcid.org/0000-0002-9402-9474</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2020-10, Vol.228 (1), p.361-375
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_2408202270
source Wiley Online Library Free Content; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals
subjects Age
Ageing
Aging
Biodegradation
Body organs
Carboxylation
Chloroplasts
cost–benefit analysis
defence
Ecosystem models
Environment models
Environmental changes
Environmental factors
Exact solutions
leaf age
leaf ontogeny
Leaves
Life span
maximum carboxylation velocity
Nitrogen
Ontogeny
optimal control
Organs
Photosynthesis
Plant organs
Plants
Ribulose-bisphosphate carboxylase
RuBisCO
Tropical climate
title Optimal leaf life strategies determine Vc,max dynamic during ontogeny
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A13%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20leaf%20life%20strategies%20determine%20Vc,max%20dynamic%20during%20ontogeny&rft.jtitle=The%20New%20phytologist&rft.au=Detto,%20Matteo&rft.date=2020-10&rft.volume=228&rft.issue=1&rft.spage=361&rft.epage=375&rft.pages=361-375&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.16712&rft_dat=%3Cproquest_wiley%3E2408202270%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440422706&rft_id=info:pmid/&rfr_iscdi=true