Multitechnology Biofabrication: A New Approach for the Manufacturing of Functional Tissue Structures?
Most available 3D biofabrication technologies rely on single-component deposition methods, such as inkjet, extrusion, or light-assisted printing. It is unlikely that any of these technologies used individually would be able to replicate the complexity and functionality of living tissues. Recently, n...
Gespeichert in:
Veröffentlicht in: | Trends in biotechnology (Regular ed.) 2020-12, Vol.38 (12), p.1316-1328 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1328 |
---|---|
container_issue | 12 |
container_start_page | 1316 |
container_title | Trends in biotechnology (Regular ed.) |
container_volume | 38 |
creator | Castilho, Miguel de Ruijter, Mylène Beirne, Stephen Villette, Claire C. Ito, Keita Wallace, Gordon G. Malda, Jos |
description | Most available 3D biofabrication technologies rely on single-component deposition methods, such as inkjet, extrusion, or light-assisted printing. It is unlikely that any of these technologies used individually would be able to replicate the complexity and functionality of living tissues. Recently, new biofabrication approaches have emerged that integrate multiple manufacturing technologies into a single biofabrication platform. This has led to fabricated structures with improved functionality. In this review, we provide a comprehensive overview of recent advances in the integration of different manufacturing technologies with the aim to fabricate more functional tissue structures. We provide our vision on the future of additive manufacturing (AM) technology, digital design, and the use of artificial intelligence (AI) in the field of biofabrication.
Single-deposition biofabrication methods mimic form but have only limited ability to replicate function of biological tissues.Multitechnology biofabrication brings new perspectives towards functional tissue manufacturing.Integration of digital design and AI-powered real-time monitoring tools with multitechnology bioprinting will allow for high-throughput biofabrication.Although simple purpose-built bioprinting systems may find use in clinical environments, laboratory environments will strongly benefit from AI-driven multitechnology bioprinting systems. |
doi_str_mv | 10.1016/j.tibtech.2020.04.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2408195755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167779920301190</els_id><sourcerecordid>2459619105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-37003af58ba1e5075392724b606b53ab2c6dbb79ef3de4193cee89cd4ef654cd3</originalsourceid><addsrcrecordid>eNqFkTtvFDEUhS0EIkvgJ4As0dDMYI9fa5poiRJASqAg1JbtuZP1ana8-AHKv8-MdqGgobrNd849Ogeh15S0lFD5fteW4Ar4bduRjrSEt4TyJ2hF10o3jGj5FK1mTjVKaX2GXuS8I4QwpelzdMY6LqWWYoXgto4lLD5THOP9A_4Y4mBdCt6WEKcPeIO_wm-8ORxStH6Lh5hw2QK-tVMdrC81hekexwFf18kvCjviu5BzBfy9pLoAkC9eomeDHTO8Ot1z9OP66u7yc3Pz7dOXy81N4zknpWFqTmgHsXaWgiBKMN2pjjtJpBPMus7L3jmlYWA9cKqZB1hr33MYpOC-Z-fo3dF3TvuzQi5mH7KHcbQTxJpNx8maaqGEmNG3_6C7WNMcf6GEllRTslDiSPkUc04wmEMKe5seDCVm2cHszGkHs-xgCDfzDrPuzcm9uj30f1V_ip-BiyMAcx2_AiSTfYDJQx8S-GL6GP7z4hEoKZx-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2459619105</pqid></control><display><type>article</type><title>Multitechnology Biofabrication: A New Approach for the Manufacturing of Functional Tissue Structures?</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Castilho, Miguel ; de Ruijter, Mylène ; Beirne, Stephen ; Villette, Claire C. ; Ito, Keita ; Wallace, Gordon G. ; Malda, Jos</creator><creatorcontrib>Castilho, Miguel ; de Ruijter, Mylène ; Beirne, Stephen ; Villette, Claire C. ; Ito, Keita ; Wallace, Gordon G. ; Malda, Jos</creatorcontrib><description>Most available 3D biofabrication technologies rely on single-component deposition methods, such as inkjet, extrusion, or light-assisted printing. It is unlikely that any of these technologies used individually would be able to replicate the complexity and functionality of living tissues. Recently, new biofabrication approaches have emerged that integrate multiple manufacturing technologies into a single biofabrication platform. This has led to fabricated structures with improved functionality. In this review, we provide a comprehensive overview of recent advances in the integration of different manufacturing technologies with the aim to fabricate more functional tissue structures. We provide our vision on the future of additive manufacturing (AM) technology, digital design, and the use of artificial intelligence (AI) in the field of biofabrication.
Single-deposition biofabrication methods mimic form but have only limited ability to replicate function of biological tissues.Multitechnology biofabrication brings new perspectives towards functional tissue manufacturing.Integration of digital design and AI-powered real-time monitoring tools with multitechnology bioprinting will allow for high-throughput biofabrication.Although simple purpose-built bioprinting systems may find use in clinical environments, laboratory environments will strongly benefit from AI-driven multitechnology bioprinting systems.</description><identifier>ISSN: 0167-7799</identifier><identifier>EISSN: 1879-3096</identifier><identifier>DOI: 10.1016/j.tibtech.2020.04.014</identifier><identifier>PMID: 32466965</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>3D bioprinting ; Artificial intelligence ; convergency of technologies ; digital design ; Extrusion ; functional tissue ; hybrid fabrication ; Hydrogels ; Inkjet printing ; Magnetic fields ; Manufacturing ; Tissue engineering ; Tissues ; Transplants & implants</subject><ispartof>Trends in biotechnology (Regular ed.), 2020-12, Vol.38 (12), p.1316-1328</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><rights>2020. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-37003af58ba1e5075392724b606b53ab2c6dbb79ef3de4193cee89cd4ef654cd3</citedby><cites>FETCH-LOGICAL-c440t-37003af58ba1e5075392724b606b53ab2c6dbb79ef3de4193cee89cd4ef654cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167779920301190$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32466965$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Castilho, Miguel</creatorcontrib><creatorcontrib>de Ruijter, Mylène</creatorcontrib><creatorcontrib>Beirne, Stephen</creatorcontrib><creatorcontrib>Villette, Claire C.</creatorcontrib><creatorcontrib>Ito, Keita</creatorcontrib><creatorcontrib>Wallace, Gordon G.</creatorcontrib><creatorcontrib>Malda, Jos</creatorcontrib><title>Multitechnology Biofabrication: A New Approach for the Manufacturing of Functional Tissue Structures?</title><title>Trends in biotechnology (Regular ed.)</title><addtitle>Trends Biotechnol</addtitle><description>Most available 3D biofabrication technologies rely on single-component deposition methods, such as inkjet, extrusion, or light-assisted printing. It is unlikely that any of these technologies used individually would be able to replicate the complexity and functionality of living tissues. Recently, new biofabrication approaches have emerged that integrate multiple manufacturing technologies into a single biofabrication platform. This has led to fabricated structures with improved functionality. In this review, we provide a comprehensive overview of recent advances in the integration of different manufacturing technologies with the aim to fabricate more functional tissue structures. We provide our vision on the future of additive manufacturing (AM) technology, digital design, and the use of artificial intelligence (AI) in the field of biofabrication.
Single-deposition biofabrication methods mimic form but have only limited ability to replicate function of biological tissues.Multitechnology biofabrication brings new perspectives towards functional tissue manufacturing.Integration of digital design and AI-powered real-time monitoring tools with multitechnology bioprinting will allow for high-throughput biofabrication.Although simple purpose-built bioprinting systems may find use in clinical environments, laboratory environments will strongly benefit from AI-driven multitechnology bioprinting systems.</description><subject>3D bioprinting</subject><subject>Artificial intelligence</subject><subject>convergency of technologies</subject><subject>digital design</subject><subject>Extrusion</subject><subject>functional tissue</subject><subject>hybrid fabrication</subject><subject>Hydrogels</subject><subject>Inkjet printing</subject><subject>Magnetic fields</subject><subject>Manufacturing</subject><subject>Tissue engineering</subject><subject>Tissues</subject><subject>Transplants & implants</subject><issn>0167-7799</issn><issn>1879-3096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkTtvFDEUhS0EIkvgJ4As0dDMYI9fa5poiRJASqAg1JbtuZP1ana8-AHKv8-MdqGgobrNd849Ogeh15S0lFD5fteW4Ar4bduRjrSEt4TyJ2hF10o3jGj5FK1mTjVKaX2GXuS8I4QwpelzdMY6LqWWYoXgto4lLD5THOP9A_4Y4mBdCt6WEKcPeIO_wm-8ORxStH6Lh5hw2QK-tVMdrC81hekexwFf18kvCjviu5BzBfy9pLoAkC9eomeDHTO8Ot1z9OP66u7yc3Pz7dOXy81N4zknpWFqTmgHsXaWgiBKMN2pjjtJpBPMus7L3jmlYWA9cKqZB1hr33MYpOC-Z-fo3dF3TvuzQi5mH7KHcbQTxJpNx8maaqGEmNG3_6C7WNMcf6GEllRTslDiSPkUc04wmEMKe5seDCVm2cHszGkHs-xgCDfzDrPuzcm9uj30f1V_ip-BiyMAcx2_AiSTfYDJQx8S-GL6GP7z4hEoKZx-</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Castilho, Miguel</creator><creator>de Ruijter, Mylène</creator><creator>Beirne, Stephen</creator><creator>Villette, Claire C.</creator><creator>Ito, Keita</creator><creator>Wallace, Gordon G.</creator><creator>Malda, Jos</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>202012</creationdate><title>Multitechnology Biofabrication: A New Approach for the Manufacturing of Functional Tissue Structures?</title><author>Castilho, Miguel ; de Ruijter, Mylène ; Beirne, Stephen ; Villette, Claire C. ; Ito, Keita ; Wallace, Gordon G. ; Malda, Jos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-37003af58ba1e5075392724b606b53ab2c6dbb79ef3de4193cee89cd4ef654cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D bioprinting</topic><topic>Artificial intelligence</topic><topic>convergency of technologies</topic><topic>digital design</topic><topic>Extrusion</topic><topic>functional tissue</topic><topic>hybrid fabrication</topic><topic>Hydrogels</topic><topic>Inkjet printing</topic><topic>Magnetic fields</topic><topic>Manufacturing</topic><topic>Tissue engineering</topic><topic>Tissues</topic><topic>Transplants & implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castilho, Miguel</creatorcontrib><creatorcontrib>de Ruijter, Mylène</creatorcontrib><creatorcontrib>Beirne, Stephen</creatorcontrib><creatorcontrib>Villette, Claire C.</creatorcontrib><creatorcontrib>Ito, Keita</creatorcontrib><creatorcontrib>Wallace, Gordon G.</creatorcontrib><creatorcontrib>Malda, Jos</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in biotechnology (Regular ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castilho, Miguel</au><au>de Ruijter, Mylène</au><au>Beirne, Stephen</au><au>Villette, Claire C.</au><au>Ito, Keita</au><au>Wallace, Gordon G.</au><au>Malda, Jos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multitechnology Biofabrication: A New Approach for the Manufacturing of Functional Tissue Structures?</atitle><jtitle>Trends in biotechnology (Regular ed.)</jtitle><addtitle>Trends Biotechnol</addtitle><date>2020-12</date><risdate>2020</risdate><volume>38</volume><issue>12</issue><spage>1316</spage><epage>1328</epage><pages>1316-1328</pages><issn>0167-7799</issn><eissn>1879-3096</eissn><abstract>Most available 3D biofabrication technologies rely on single-component deposition methods, such as inkjet, extrusion, or light-assisted printing. It is unlikely that any of these technologies used individually would be able to replicate the complexity and functionality of living tissues. Recently, new biofabrication approaches have emerged that integrate multiple manufacturing technologies into a single biofabrication platform. This has led to fabricated structures with improved functionality. In this review, we provide a comprehensive overview of recent advances in the integration of different manufacturing technologies with the aim to fabricate more functional tissue structures. We provide our vision on the future of additive manufacturing (AM) technology, digital design, and the use of artificial intelligence (AI) in the field of biofabrication.
Single-deposition biofabrication methods mimic form but have only limited ability to replicate function of biological tissues.Multitechnology biofabrication brings new perspectives towards functional tissue manufacturing.Integration of digital design and AI-powered real-time monitoring tools with multitechnology bioprinting will allow for high-throughput biofabrication.Although simple purpose-built bioprinting systems may find use in clinical environments, laboratory environments will strongly benefit from AI-driven multitechnology bioprinting systems.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>32466965</pmid><doi>10.1016/j.tibtech.2020.04.014</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-7799 |
ispartof | Trends in biotechnology (Regular ed.), 2020-12, Vol.38 (12), p.1316-1328 |
issn | 0167-7799 1879-3096 |
language | eng |
recordid | cdi_proquest_miscellaneous_2408195755 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | 3D bioprinting Artificial intelligence convergency of technologies digital design Extrusion functional tissue hybrid fabrication Hydrogels Inkjet printing Magnetic fields Manufacturing Tissue engineering Tissues Transplants & implants |
title | Multitechnology Biofabrication: A New Approach for the Manufacturing of Functional Tissue Structures? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A31%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multitechnology%20Biofabrication:%20A%20New%20Approach%20for%20the%20Manufacturing%20of%20Functional%20Tissue%20Structures?&rft.jtitle=Trends%20in%20biotechnology%20(Regular%20ed.)&rft.au=Castilho,%20Miguel&rft.date=2020-12&rft.volume=38&rft.issue=12&rft.spage=1316&rft.epage=1328&rft.pages=1316-1328&rft.issn=0167-7799&rft.eissn=1879-3096&rft_id=info:doi/10.1016/j.tibtech.2020.04.014&rft_dat=%3Cproquest_cross%3E2459619105%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2459619105&rft_id=info:pmid/32466965&rft_els_id=S0167779920301190&rfr_iscdi=true |