Multitechnology Biofabrication: A New Approach for the Manufacturing of Functional Tissue Structures?

Most available 3D biofabrication technologies rely on single-component deposition methods, such as inkjet, extrusion, or light-assisted printing. It is unlikely that any of these technologies used individually would be able to replicate the complexity and functionality of living tissues. Recently, n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in biotechnology (Regular ed.) 2020-12, Vol.38 (12), p.1316-1328
Hauptverfasser: Castilho, Miguel, de Ruijter, Mylène, Beirne, Stephen, Villette, Claire C., Ito, Keita, Wallace, Gordon G., Malda, Jos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1328
container_issue 12
container_start_page 1316
container_title Trends in biotechnology (Regular ed.)
container_volume 38
creator Castilho, Miguel
de Ruijter, Mylène
Beirne, Stephen
Villette, Claire C.
Ito, Keita
Wallace, Gordon G.
Malda, Jos
description Most available 3D biofabrication technologies rely on single-component deposition methods, such as inkjet, extrusion, or light-assisted printing. It is unlikely that any of these technologies used individually would be able to replicate the complexity and functionality of living tissues. Recently, new biofabrication approaches have emerged that integrate multiple manufacturing technologies into a single biofabrication platform. This has led to fabricated structures with improved functionality. In this review, we provide a comprehensive overview of recent advances in the integration of different manufacturing technologies with the aim to fabricate more functional tissue structures. We provide our vision on the future of additive manufacturing (AM) technology, digital design, and the use of artificial intelligence (AI) in the field of biofabrication. Single-deposition biofabrication methods mimic form but have only limited ability to replicate function of biological tissues.Multitechnology biofabrication brings new perspectives towards functional tissue manufacturing.Integration of digital design and AI-powered real-time monitoring tools with multitechnology bioprinting will allow for high-throughput biofabrication.Although simple purpose-built bioprinting systems may find use in clinical environments, laboratory environments will strongly benefit from AI-driven multitechnology bioprinting systems.
doi_str_mv 10.1016/j.tibtech.2020.04.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2408195755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167779920301190</els_id><sourcerecordid>2459619105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-37003af58ba1e5075392724b606b53ab2c6dbb79ef3de4193cee89cd4ef654cd3</originalsourceid><addsrcrecordid>eNqFkTtvFDEUhS0EIkvgJ4As0dDMYI9fa5poiRJASqAg1JbtuZP1ana8-AHKv8-MdqGgobrNd849Ogeh15S0lFD5fteW4Ar4bduRjrSEt4TyJ2hF10o3jGj5FK1mTjVKaX2GXuS8I4QwpelzdMY6LqWWYoXgto4lLD5THOP9A_4Y4mBdCt6WEKcPeIO_wm-8ORxStH6Lh5hw2QK-tVMdrC81hekexwFf18kvCjviu5BzBfy9pLoAkC9eomeDHTO8Ot1z9OP66u7yc3Pz7dOXy81N4zknpWFqTmgHsXaWgiBKMN2pjjtJpBPMus7L3jmlYWA9cKqZB1hr33MYpOC-Z-fo3dF3TvuzQi5mH7KHcbQTxJpNx8maaqGEmNG3_6C7WNMcf6GEllRTslDiSPkUc04wmEMKe5seDCVm2cHszGkHs-xgCDfzDrPuzcm9uj30f1V_ip-BiyMAcx2_AiSTfYDJQx8S-GL6GP7z4hEoKZx-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2459619105</pqid></control><display><type>article</type><title>Multitechnology Biofabrication: A New Approach for the Manufacturing of Functional Tissue Structures?</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Castilho, Miguel ; de Ruijter, Mylène ; Beirne, Stephen ; Villette, Claire C. ; Ito, Keita ; Wallace, Gordon G. ; Malda, Jos</creator><creatorcontrib>Castilho, Miguel ; de Ruijter, Mylène ; Beirne, Stephen ; Villette, Claire C. ; Ito, Keita ; Wallace, Gordon G. ; Malda, Jos</creatorcontrib><description>Most available 3D biofabrication technologies rely on single-component deposition methods, such as inkjet, extrusion, or light-assisted printing. It is unlikely that any of these technologies used individually would be able to replicate the complexity and functionality of living tissues. Recently, new biofabrication approaches have emerged that integrate multiple manufacturing technologies into a single biofabrication platform. This has led to fabricated structures with improved functionality. In this review, we provide a comprehensive overview of recent advances in the integration of different manufacturing technologies with the aim to fabricate more functional tissue structures. We provide our vision on the future of additive manufacturing (AM) technology, digital design, and the use of artificial intelligence (AI) in the field of biofabrication. Single-deposition biofabrication methods mimic form but have only limited ability to replicate function of biological tissues.Multitechnology biofabrication brings new perspectives towards functional tissue manufacturing.Integration of digital design and AI-powered real-time monitoring tools with multitechnology bioprinting will allow for high-throughput biofabrication.Although simple purpose-built bioprinting systems may find use in clinical environments, laboratory environments will strongly benefit from AI-driven multitechnology bioprinting systems.</description><identifier>ISSN: 0167-7799</identifier><identifier>EISSN: 1879-3096</identifier><identifier>DOI: 10.1016/j.tibtech.2020.04.014</identifier><identifier>PMID: 32466965</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>3D bioprinting ; Artificial intelligence ; convergency of technologies ; digital design ; Extrusion ; functional tissue ; hybrid fabrication ; Hydrogels ; Inkjet printing ; Magnetic fields ; Manufacturing ; Tissue engineering ; Tissues ; Transplants &amp; implants</subject><ispartof>Trends in biotechnology (Regular ed.), 2020-12, Vol.38 (12), p.1316-1328</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><rights>2020. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-37003af58ba1e5075392724b606b53ab2c6dbb79ef3de4193cee89cd4ef654cd3</citedby><cites>FETCH-LOGICAL-c440t-37003af58ba1e5075392724b606b53ab2c6dbb79ef3de4193cee89cd4ef654cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167779920301190$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32466965$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Castilho, Miguel</creatorcontrib><creatorcontrib>de Ruijter, Mylène</creatorcontrib><creatorcontrib>Beirne, Stephen</creatorcontrib><creatorcontrib>Villette, Claire C.</creatorcontrib><creatorcontrib>Ito, Keita</creatorcontrib><creatorcontrib>Wallace, Gordon G.</creatorcontrib><creatorcontrib>Malda, Jos</creatorcontrib><title>Multitechnology Biofabrication: A New Approach for the Manufacturing of Functional Tissue Structures?</title><title>Trends in biotechnology (Regular ed.)</title><addtitle>Trends Biotechnol</addtitle><description>Most available 3D biofabrication technologies rely on single-component deposition methods, such as inkjet, extrusion, or light-assisted printing. It is unlikely that any of these technologies used individually would be able to replicate the complexity and functionality of living tissues. Recently, new biofabrication approaches have emerged that integrate multiple manufacturing technologies into a single biofabrication platform. This has led to fabricated structures with improved functionality. In this review, we provide a comprehensive overview of recent advances in the integration of different manufacturing technologies with the aim to fabricate more functional tissue structures. We provide our vision on the future of additive manufacturing (AM) technology, digital design, and the use of artificial intelligence (AI) in the field of biofabrication. Single-deposition biofabrication methods mimic form but have only limited ability to replicate function of biological tissues.Multitechnology biofabrication brings new perspectives towards functional tissue manufacturing.Integration of digital design and AI-powered real-time monitoring tools with multitechnology bioprinting will allow for high-throughput biofabrication.Although simple purpose-built bioprinting systems may find use in clinical environments, laboratory environments will strongly benefit from AI-driven multitechnology bioprinting systems.</description><subject>3D bioprinting</subject><subject>Artificial intelligence</subject><subject>convergency of technologies</subject><subject>digital design</subject><subject>Extrusion</subject><subject>functional tissue</subject><subject>hybrid fabrication</subject><subject>Hydrogels</subject><subject>Inkjet printing</subject><subject>Magnetic fields</subject><subject>Manufacturing</subject><subject>Tissue engineering</subject><subject>Tissues</subject><subject>Transplants &amp; implants</subject><issn>0167-7799</issn><issn>1879-3096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkTtvFDEUhS0EIkvgJ4As0dDMYI9fa5poiRJASqAg1JbtuZP1ana8-AHKv8-MdqGgobrNd849Ogeh15S0lFD5fteW4Ar4bduRjrSEt4TyJ2hF10o3jGj5FK1mTjVKaX2GXuS8I4QwpelzdMY6LqWWYoXgto4lLD5THOP9A_4Y4mBdCt6WEKcPeIO_wm-8ORxStH6Lh5hw2QK-tVMdrC81hekexwFf18kvCjviu5BzBfy9pLoAkC9eomeDHTO8Ot1z9OP66u7yc3Pz7dOXy81N4zknpWFqTmgHsXaWgiBKMN2pjjtJpBPMus7L3jmlYWA9cKqZB1hr33MYpOC-Z-fo3dF3TvuzQi5mH7KHcbQTxJpNx8maaqGEmNG3_6C7WNMcf6GEllRTslDiSPkUc04wmEMKe5seDCVm2cHszGkHs-xgCDfzDrPuzcm9uj30f1V_ip-BiyMAcx2_AiSTfYDJQx8S-GL6GP7z4hEoKZx-</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Castilho, Miguel</creator><creator>de Ruijter, Mylène</creator><creator>Beirne, Stephen</creator><creator>Villette, Claire C.</creator><creator>Ito, Keita</creator><creator>Wallace, Gordon G.</creator><creator>Malda, Jos</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>202012</creationdate><title>Multitechnology Biofabrication: A New Approach for the Manufacturing of Functional Tissue Structures?</title><author>Castilho, Miguel ; de Ruijter, Mylène ; Beirne, Stephen ; Villette, Claire C. ; Ito, Keita ; Wallace, Gordon G. ; Malda, Jos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-37003af58ba1e5075392724b606b53ab2c6dbb79ef3de4193cee89cd4ef654cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D bioprinting</topic><topic>Artificial intelligence</topic><topic>convergency of technologies</topic><topic>digital design</topic><topic>Extrusion</topic><topic>functional tissue</topic><topic>hybrid fabrication</topic><topic>Hydrogels</topic><topic>Inkjet printing</topic><topic>Magnetic fields</topic><topic>Manufacturing</topic><topic>Tissue engineering</topic><topic>Tissues</topic><topic>Transplants &amp; implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castilho, Miguel</creatorcontrib><creatorcontrib>de Ruijter, Mylène</creatorcontrib><creatorcontrib>Beirne, Stephen</creatorcontrib><creatorcontrib>Villette, Claire C.</creatorcontrib><creatorcontrib>Ito, Keita</creatorcontrib><creatorcontrib>Wallace, Gordon G.</creatorcontrib><creatorcontrib>Malda, Jos</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in biotechnology (Regular ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castilho, Miguel</au><au>de Ruijter, Mylène</au><au>Beirne, Stephen</au><au>Villette, Claire C.</au><au>Ito, Keita</au><au>Wallace, Gordon G.</au><au>Malda, Jos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multitechnology Biofabrication: A New Approach for the Manufacturing of Functional Tissue Structures?</atitle><jtitle>Trends in biotechnology (Regular ed.)</jtitle><addtitle>Trends Biotechnol</addtitle><date>2020-12</date><risdate>2020</risdate><volume>38</volume><issue>12</issue><spage>1316</spage><epage>1328</epage><pages>1316-1328</pages><issn>0167-7799</issn><eissn>1879-3096</eissn><abstract>Most available 3D biofabrication technologies rely on single-component deposition methods, such as inkjet, extrusion, or light-assisted printing. It is unlikely that any of these technologies used individually would be able to replicate the complexity and functionality of living tissues. Recently, new biofabrication approaches have emerged that integrate multiple manufacturing technologies into a single biofabrication platform. This has led to fabricated structures with improved functionality. In this review, we provide a comprehensive overview of recent advances in the integration of different manufacturing technologies with the aim to fabricate more functional tissue structures. We provide our vision on the future of additive manufacturing (AM) technology, digital design, and the use of artificial intelligence (AI) in the field of biofabrication. Single-deposition biofabrication methods mimic form but have only limited ability to replicate function of biological tissues.Multitechnology biofabrication brings new perspectives towards functional tissue manufacturing.Integration of digital design and AI-powered real-time monitoring tools with multitechnology bioprinting will allow for high-throughput biofabrication.Although simple purpose-built bioprinting systems may find use in clinical environments, laboratory environments will strongly benefit from AI-driven multitechnology bioprinting systems.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>32466965</pmid><doi>10.1016/j.tibtech.2020.04.014</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-7799
ispartof Trends in biotechnology (Regular ed.), 2020-12, Vol.38 (12), p.1316-1328
issn 0167-7799
1879-3096
language eng
recordid cdi_proquest_miscellaneous_2408195755
source ScienceDirect Journals (5 years ago - present)
subjects 3D bioprinting
Artificial intelligence
convergency of technologies
digital design
Extrusion
functional tissue
hybrid fabrication
Hydrogels
Inkjet printing
Magnetic fields
Manufacturing
Tissue engineering
Tissues
Transplants & implants
title Multitechnology Biofabrication: A New Approach for the Manufacturing of Functional Tissue Structures?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A31%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multitechnology%20Biofabrication:%20A%20New%20Approach%20for%20the%20Manufacturing%20of%20Functional%20Tissue%20Structures?&rft.jtitle=Trends%20in%20biotechnology%20(Regular%20ed.)&rft.au=Castilho,%20Miguel&rft.date=2020-12&rft.volume=38&rft.issue=12&rft.spage=1316&rft.epage=1328&rft.pages=1316-1328&rft.issn=0167-7799&rft.eissn=1879-3096&rft_id=info:doi/10.1016/j.tibtech.2020.04.014&rft_dat=%3Cproquest_cross%3E2459619105%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2459619105&rft_id=info:pmid/32466965&rft_els_id=S0167779920301190&rfr_iscdi=true