A census of baryons in the Universe from localized fast radio bursts

More than three-quarters of the baryonic content of the Universe resides in a highly diffuse state that is difficult to detect, with only a small fraction directly observed in galaxies and galaxy clusters 1 , 2 . Censuses of the nearby Universe have used absorption line spectroscopy 3 , 4 to observe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2020-05, Vol.581 (7809), p.391-395
Hauptverfasser: Macquart, J.-P., Prochaska, J. X., McQuinn, M., Bannister, K. W., Bhandari, S., Day, C. K., Deller, A. T., Ekers, R. D., James, C. W., Marnoch, L., Osłowski, S., Phillips, C., Ryder, S. D., Scott, D. R., Shannon, R. M., Tejos, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 395
container_issue 7809
container_start_page 391
container_title Nature (London)
container_volume 581
creator Macquart, J.-P.
Prochaska, J. X.
McQuinn, M.
Bannister, K. W.
Bhandari, S.
Day, C. K.
Deller, A. T.
Ekers, R. D.
James, C. W.
Marnoch, L.
Osłowski, S.
Phillips, C.
Ryder, S. D.
Scott, D. R.
Shannon, R. M.
Tejos, N.
description More than three-quarters of the baryonic content of the Universe resides in a highly diffuse state that is difficult to detect, with only a small fraction directly observed in galaxies and galaxy clusters 1 , 2 . Censuses of the nearby Universe have used absorption line spectroscopy 3 , 4 to observe the ‘invisible’ baryons, but these measurements rely on large and uncertain corrections and are insensitive to most of the Universe’s volume and probably most of its mass. In particular, quasar spectroscopy is sensitive either to the very small amounts of hydrogen that exist in the atomic state, or to highly ionized and enriched gas 4 – 6 in denser regions near galaxies 7 . Other techniques to observe these invisible baryons also have limitations; Sunyaev–Zel’dovich analyses 8 , 9 can provide evidence from gas within filamentary structures, and studies of X-ray emission are most sensitive to gas near galaxy clusters 9 , 10 . Here we report a measurement of the baryon content of the Universe using the dispersion of a sample of localized fast radio bursts; this technique determines the electron column density along each line of sight and accounts for every ionized baryon 11 – 13 . We augment the sample of reported arcsecond-localized 14 – 18 fast radio bursts with four new localizations in host galaxies that have measured redshifts of 0.291, 0.118, 0.378 and 0.522. This completes a sample sufficiently large to account for dispersion variations along the lines of sight and in the host-galaxy environments 11 , and we derive a cosmic baryon density of Ω b = 0.051 − 0.025 + 0.021 h 70 − 1 (95 per cent confidence; h 70 =  H 0 /(70 km s −1 Mpc −1 ) and  H 0 is Hubble’s constant). This independent measurement is consistent with values derived from the cosmic microwave background and from Big Bang nucleosynthesis 19 , 20 . The baryon density determined along the lines of sight to localized fast radio bursts is consistent with that determined from the cosmic microwave background and required by Big Bang nucleosynthesis.
doi_str_mv 10.1038/s41586-020-2300-2
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2407579996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A625089929</galeid><sourcerecordid>A625089929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c640t-38b16b596920ab04f91746a54a59588bf57944cde390955841e1a292a9e325183</originalsourceid><addsrcrecordid>eNp10u9r1DAYB_AgijtP_wDfSHBvJtKZpEmavDxu_hgMBd3wZUjbp2dGm9ySVtS_3pSbzpMbhRTST748pF-EnlNySkmp3iROhZIFYaRgJcnLA7SgvJIFl6p6iBaEMFUQVcoj9CSla0KIoBV_jI5KxiWVgi7Q2Qo34NOUcOhwbePP4BN2Ho_fAF959x1iAtzFMOA-NLZ3v6DFnU0jjrZ1AddTTGN6ih51tk_w7Pa9RFfv3l6uPxQXn96fr1cXRSM5GYtS1VTWQkvNiK0J73SeRlrBrdBCqboTlea8aaHURAuhOAVqmWZWQ8kEVeUSnexytzHcTJBGM7jUQN9bD2FKhnFS5QytZabH_9HrMEWfp5uVEpJLqe_UxvZgnO_CGG0zh5qVZIIordmsigNqAx6i7YOHzuXtPf_ygG-27sb8i04PoPy0MLjmYOqrvQPZjPBj3NgpJXP-5fO-fX2_XV1-XX_c13SnmxhSitCZbXRD7oKhxMxFM7uimVw0MxctL0v04vZ-p3qA9u-JP83KgO1Ayp_8BuLdD7g_9TdeWdWH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408564669</pqid></control><display><type>article</type><title>A census of baryons in the Universe from localized fast radio bursts</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Macquart, J.-P. ; Prochaska, J. X. ; McQuinn, M. ; Bannister, K. W. ; Bhandari, S. ; Day, C. K. ; Deller, A. T. ; Ekers, R. D. ; James, C. W. ; Marnoch, L. ; Osłowski, S. ; Phillips, C. ; Ryder, S. D. ; Scott, D. R. ; Shannon, R. M. ; Tejos, N.</creator><creatorcontrib>Macquart, J.-P. ; Prochaska, J. X. ; McQuinn, M. ; Bannister, K. W. ; Bhandari, S. ; Day, C. K. ; Deller, A. T. ; Ekers, R. D. ; James, C. W. ; Marnoch, L. ; Osłowski, S. ; Phillips, C. ; Ryder, S. D. ; Scott, D. R. ; Shannon, R. M. ; Tejos, N.</creatorcontrib><description>More than three-quarters of the baryonic content of the Universe resides in a highly diffuse state that is difficult to detect, with only a small fraction directly observed in galaxies and galaxy clusters 1 , 2 . Censuses of the nearby Universe have used absorption line spectroscopy 3 , 4 to observe the ‘invisible’ baryons, but these measurements rely on large and uncertain corrections and are insensitive to most of the Universe’s volume and probably most of its mass. In particular, quasar spectroscopy is sensitive either to the very small amounts of hydrogen that exist in the atomic state, or to highly ionized and enriched gas 4 – 6 in denser regions near galaxies 7 . Other techniques to observe these invisible baryons also have limitations; Sunyaev–Zel’dovich analyses 8 , 9 can provide evidence from gas within filamentary structures, and studies of X-ray emission are most sensitive to gas near galaxy clusters 9 , 10 . Here we report a measurement of the baryon content of the Universe using the dispersion of a sample of localized fast radio bursts; this technique determines the electron column density along each line of sight and accounts for every ionized baryon 11 – 13 . We augment the sample of reported arcsecond-localized 14 – 18 fast radio bursts with four new localizations in host galaxies that have measured redshifts of 0.291, 0.118, 0.378 and 0.522. This completes a sample sufficiently large to account for dispersion variations along the lines of sight and in the host-galaxy environments 11 , and we derive a cosmic baryon density of Ω b = 0.051 − 0.025 + 0.021 h 70 − 1 (95 per cent confidence; h 70 =  H 0 /(70 km s −1 Mpc −1 ) and  H 0 is Hubble’s constant). This independent measurement is consistent with values derived from the cosmic microwave background and from Big Bang nucleosynthesis 19 , 20 . The baryon density determined along the lines of sight to localized fast radio bursts is consistent with that determined from the cosmic microwave background and required by Big Bang nucleosynthesis.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-2300-2</identifier><identifier>PMID: 32461651</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/33/34/124 ; 639/33/34/4127 ; Atomic states ; Baryons ; Big bang cosmology ; Census ; Composition ; Cosmic microwave background ; Dark energy ; Density ; Dispersion ; Emission analysis ; Galaxies ; Humanities and Social Sciences ; Hydrogen ; Line of sight ; Mass spectroscopy ; Methods ; multidisciplinary ; Observations ; Optical pulses ; Quasars ; Radio bursts ; Science ; Science (multidisciplinary) ; Sky surveys ; Spectroscopy ; Standard deviation ; Stars &amp; galaxies ; Surveys ; Universe ; X-ray emissions</subject><ispartof>Nature (London), 2020-05, Vol.581 (7809), p.391-395</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group May 28, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c640t-38b16b596920ab04f91746a54a59588bf57944cde390955841e1a292a9e325183</citedby><cites>FETCH-LOGICAL-c640t-38b16b596920ab04f91746a54a59588bf57944cde390955841e1a292a9e325183</cites><orcidid>0000-0002-6437-6176 ; 0000-0003-0289-0732 ; 0000-0003-3460-506X ; 0000-0003-4501-8100 ; 0000-0003-2149-0363 ; 0000-0002-7285-6348 ; 0000-0002-5851-5264 ; 0000-0003-1483-0147 ; 0000-0002-8101-3027 ; 0000-0001-9434-3837 ; 0000-0002-1883-4252 ; 0000-0001-6763-8234 ; 0000-0002-7738-6875</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32461651$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Macquart, J.-P.</creatorcontrib><creatorcontrib>Prochaska, J. X.</creatorcontrib><creatorcontrib>McQuinn, M.</creatorcontrib><creatorcontrib>Bannister, K. W.</creatorcontrib><creatorcontrib>Bhandari, S.</creatorcontrib><creatorcontrib>Day, C. K.</creatorcontrib><creatorcontrib>Deller, A. T.</creatorcontrib><creatorcontrib>Ekers, R. D.</creatorcontrib><creatorcontrib>James, C. W.</creatorcontrib><creatorcontrib>Marnoch, L.</creatorcontrib><creatorcontrib>Osłowski, S.</creatorcontrib><creatorcontrib>Phillips, C.</creatorcontrib><creatorcontrib>Ryder, S. D.</creatorcontrib><creatorcontrib>Scott, D. R.</creatorcontrib><creatorcontrib>Shannon, R. M.</creatorcontrib><creatorcontrib>Tejos, N.</creatorcontrib><title>A census of baryons in the Universe from localized fast radio bursts</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>More than three-quarters of the baryonic content of the Universe resides in a highly diffuse state that is difficult to detect, with only a small fraction directly observed in galaxies and galaxy clusters 1 , 2 . Censuses of the nearby Universe have used absorption line spectroscopy 3 , 4 to observe the ‘invisible’ baryons, but these measurements rely on large and uncertain corrections and are insensitive to most of the Universe’s volume and probably most of its mass. In particular, quasar spectroscopy is sensitive either to the very small amounts of hydrogen that exist in the atomic state, or to highly ionized and enriched gas 4 – 6 in denser regions near galaxies 7 . Other techniques to observe these invisible baryons also have limitations; Sunyaev–Zel’dovich analyses 8 , 9 can provide evidence from gas within filamentary structures, and studies of X-ray emission are most sensitive to gas near galaxy clusters 9 , 10 . Here we report a measurement of the baryon content of the Universe using the dispersion of a sample of localized fast radio bursts; this technique determines the electron column density along each line of sight and accounts for every ionized baryon 11 – 13 . We augment the sample of reported arcsecond-localized 14 – 18 fast radio bursts with four new localizations in host galaxies that have measured redshifts of 0.291, 0.118, 0.378 and 0.522. This completes a sample sufficiently large to account for dispersion variations along the lines of sight and in the host-galaxy environments 11 , and we derive a cosmic baryon density of Ω b = 0.051 − 0.025 + 0.021 h 70 − 1 (95 per cent confidence; h 70 =  H 0 /(70 km s −1 Mpc −1 ) and  H 0 is Hubble’s constant). This independent measurement is consistent with values derived from the cosmic microwave background and from Big Bang nucleosynthesis 19 , 20 . The baryon density determined along the lines of sight to localized fast radio bursts is consistent with that determined from the cosmic microwave background and required by Big Bang nucleosynthesis.</description><subject>639/33/34/124</subject><subject>639/33/34/4127</subject><subject>Atomic states</subject><subject>Baryons</subject><subject>Big bang cosmology</subject><subject>Census</subject><subject>Composition</subject><subject>Cosmic microwave background</subject><subject>Dark energy</subject><subject>Density</subject><subject>Dispersion</subject><subject>Emission analysis</subject><subject>Galaxies</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogen</subject><subject>Line of sight</subject><subject>Mass spectroscopy</subject><subject>Methods</subject><subject>multidisciplinary</subject><subject>Observations</subject><subject>Optical pulses</subject><subject>Quasars</subject><subject>Radio bursts</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sky surveys</subject><subject>Spectroscopy</subject><subject>Standard deviation</subject><subject>Stars &amp; galaxies</subject><subject>Surveys</subject><subject>Universe</subject><subject>X-ray emissions</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10u9r1DAYB_AgijtP_wDfSHBvJtKZpEmavDxu_hgMBd3wZUjbp2dGm9ySVtS_3pSbzpMbhRTST748pF-EnlNySkmp3iROhZIFYaRgJcnLA7SgvJIFl6p6iBaEMFUQVcoj9CSla0KIoBV_jI5KxiWVgi7Q2Qo34NOUcOhwbePP4BN2Ho_fAF959x1iAtzFMOA-NLZ3v6DFnU0jjrZ1AddTTGN6ih51tk_w7Pa9RFfv3l6uPxQXn96fr1cXRSM5GYtS1VTWQkvNiK0J73SeRlrBrdBCqboTlea8aaHURAuhOAVqmWZWQ8kEVeUSnexytzHcTJBGM7jUQN9bD2FKhnFS5QytZabH_9HrMEWfp5uVEpJLqe_UxvZgnO_CGG0zh5qVZIIordmsigNqAx6i7YOHzuXtPf_ygG-27sb8i04PoPy0MLjmYOqrvQPZjPBj3NgpJXP-5fO-fX2_XV1-XX_c13SnmxhSitCZbXRD7oKhxMxFM7uimVw0MxctL0v04vZ-p3qA9u-JP83KgO1Ayp_8BuLdD7g_9TdeWdWH</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Macquart, J.-P.</creator><creator>Prochaska, J. X.</creator><creator>McQuinn, M.</creator><creator>Bannister, K. W.</creator><creator>Bhandari, S.</creator><creator>Day, C. K.</creator><creator>Deller, A. T.</creator><creator>Ekers, R. D.</creator><creator>James, C. W.</creator><creator>Marnoch, L.</creator><creator>Osłowski, S.</creator><creator>Phillips, C.</creator><creator>Ryder, S. D.</creator><creator>Scott, D. R.</creator><creator>Shannon, R. M.</creator><creator>Tejos, N.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6437-6176</orcidid><orcidid>https://orcid.org/0000-0003-0289-0732</orcidid><orcidid>https://orcid.org/0000-0003-3460-506X</orcidid><orcidid>https://orcid.org/0000-0003-4501-8100</orcidid><orcidid>https://orcid.org/0000-0003-2149-0363</orcidid><orcidid>https://orcid.org/0000-0002-7285-6348</orcidid><orcidid>https://orcid.org/0000-0002-5851-5264</orcidid><orcidid>https://orcid.org/0000-0003-1483-0147</orcidid><orcidid>https://orcid.org/0000-0002-8101-3027</orcidid><orcidid>https://orcid.org/0000-0001-9434-3837</orcidid><orcidid>https://orcid.org/0000-0002-1883-4252</orcidid><orcidid>https://orcid.org/0000-0001-6763-8234</orcidid><orcidid>https://orcid.org/0000-0002-7738-6875</orcidid></search><sort><creationdate>202005</creationdate><title>A census of baryons in the Universe from localized fast radio bursts</title><author>Macquart, J.-P. ; Prochaska, J. X. ; McQuinn, M. ; Bannister, K. W. ; Bhandari, S. ; Day, C. K. ; Deller, A. T. ; Ekers, R. D. ; James, C. W. ; Marnoch, L. ; Osłowski, S. ; Phillips, C. ; Ryder, S. D. ; Scott, D. R. ; Shannon, R. M. ; Tejos, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c640t-38b16b596920ab04f91746a54a59588bf57944cde390955841e1a292a9e325183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/33/34/124</topic><topic>639/33/34/4127</topic><topic>Atomic states</topic><topic>Baryons</topic><topic>Big bang cosmology</topic><topic>Census</topic><topic>Composition</topic><topic>Cosmic microwave background</topic><topic>Dark energy</topic><topic>Density</topic><topic>Dispersion</topic><topic>Emission analysis</topic><topic>Galaxies</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogen</topic><topic>Line of sight</topic><topic>Mass spectroscopy</topic><topic>Methods</topic><topic>multidisciplinary</topic><topic>Observations</topic><topic>Optical pulses</topic><topic>Quasars</topic><topic>Radio bursts</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sky surveys</topic><topic>Spectroscopy</topic><topic>Standard deviation</topic><topic>Stars &amp; galaxies</topic><topic>Surveys</topic><topic>Universe</topic><topic>X-ray emissions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Macquart, J.-P.</creatorcontrib><creatorcontrib>Prochaska, J. X.</creatorcontrib><creatorcontrib>McQuinn, M.</creatorcontrib><creatorcontrib>Bannister, K. W.</creatorcontrib><creatorcontrib>Bhandari, S.</creatorcontrib><creatorcontrib>Day, C. K.</creatorcontrib><creatorcontrib>Deller, A. T.</creatorcontrib><creatorcontrib>Ekers, R. D.</creatorcontrib><creatorcontrib>James, C. W.</creatorcontrib><creatorcontrib>Marnoch, L.</creatorcontrib><creatorcontrib>Osłowski, S.</creatorcontrib><creatorcontrib>Phillips, C.</creatorcontrib><creatorcontrib>Ryder, S. D.</creatorcontrib><creatorcontrib>Scott, D. R.</creatorcontrib><creatorcontrib>Shannon, R. M.</creatorcontrib><creatorcontrib>Tejos, N.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology Journals</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Macquart, J.-P.</au><au>Prochaska, J. X.</au><au>McQuinn, M.</au><au>Bannister, K. W.</au><au>Bhandari, S.</au><au>Day, C. K.</au><au>Deller, A. T.</au><au>Ekers, R. D.</au><au>James, C. W.</au><au>Marnoch, L.</au><au>Osłowski, S.</au><au>Phillips, C.</au><au>Ryder, S. D.</au><au>Scott, D. R.</au><au>Shannon, R. M.</au><au>Tejos, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A census of baryons in the Universe from localized fast radio bursts</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2020-05</date><risdate>2020</risdate><volume>581</volume><issue>7809</issue><spage>391</spage><epage>395</epage><pages>391-395</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>More than three-quarters of the baryonic content of the Universe resides in a highly diffuse state that is difficult to detect, with only a small fraction directly observed in galaxies and galaxy clusters 1 , 2 . Censuses of the nearby Universe have used absorption line spectroscopy 3 , 4 to observe the ‘invisible’ baryons, but these measurements rely on large and uncertain corrections and are insensitive to most of the Universe’s volume and probably most of its mass. In particular, quasar spectroscopy is sensitive either to the very small amounts of hydrogen that exist in the atomic state, or to highly ionized and enriched gas 4 – 6 in denser regions near galaxies 7 . Other techniques to observe these invisible baryons also have limitations; Sunyaev–Zel’dovich analyses 8 , 9 can provide evidence from gas within filamentary structures, and studies of X-ray emission are most sensitive to gas near galaxy clusters 9 , 10 . Here we report a measurement of the baryon content of the Universe using the dispersion of a sample of localized fast radio bursts; this technique determines the electron column density along each line of sight and accounts for every ionized baryon 11 – 13 . We augment the sample of reported arcsecond-localized 14 – 18 fast radio bursts with four new localizations in host galaxies that have measured redshifts of 0.291, 0.118, 0.378 and 0.522. This completes a sample sufficiently large to account for dispersion variations along the lines of sight and in the host-galaxy environments 11 , and we derive a cosmic baryon density of Ω b = 0.051 − 0.025 + 0.021 h 70 − 1 (95 per cent confidence; h 70 =  H 0 /(70 km s −1 Mpc −1 ) and  H 0 is Hubble’s constant). This independent measurement is consistent with values derived from the cosmic microwave background and from Big Bang nucleosynthesis 19 , 20 . The baryon density determined along the lines of sight to localized fast radio bursts is consistent with that determined from the cosmic microwave background and required by Big Bang nucleosynthesis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32461651</pmid><doi>10.1038/s41586-020-2300-2</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6437-6176</orcidid><orcidid>https://orcid.org/0000-0003-0289-0732</orcidid><orcidid>https://orcid.org/0000-0003-3460-506X</orcidid><orcidid>https://orcid.org/0000-0003-4501-8100</orcidid><orcidid>https://orcid.org/0000-0003-2149-0363</orcidid><orcidid>https://orcid.org/0000-0002-7285-6348</orcidid><orcidid>https://orcid.org/0000-0002-5851-5264</orcidid><orcidid>https://orcid.org/0000-0003-1483-0147</orcidid><orcidid>https://orcid.org/0000-0002-8101-3027</orcidid><orcidid>https://orcid.org/0000-0001-9434-3837</orcidid><orcidid>https://orcid.org/0000-0002-1883-4252</orcidid><orcidid>https://orcid.org/0000-0001-6763-8234</orcidid><orcidid>https://orcid.org/0000-0002-7738-6875</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2020-05, Vol.581 (7809), p.391-395
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_2407579996
source Nature; Alma/SFX Local Collection
subjects 639/33/34/124
639/33/34/4127
Atomic states
Baryons
Big bang cosmology
Census
Composition
Cosmic microwave background
Dark energy
Density
Dispersion
Emission analysis
Galaxies
Humanities and Social Sciences
Hydrogen
Line of sight
Mass spectroscopy
Methods
multidisciplinary
Observations
Optical pulses
Quasars
Radio bursts
Science
Science (multidisciplinary)
Sky surveys
Spectroscopy
Standard deviation
Stars & galaxies
Surveys
Universe
X-ray emissions
title A census of baryons in the Universe from localized fast radio bursts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T23%3A55%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20census%20of%20baryons%20in%20the%20Universe%20from%20localized%20fast%20radio%20bursts&rft.jtitle=Nature%20(London)&rft.au=Macquart,%20J.-P.&rft.date=2020-05&rft.volume=581&rft.issue=7809&rft.spage=391&rft.epage=395&rft.pages=391-395&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-2300-2&rft_dat=%3Cgale_proqu%3EA625089929%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2408564669&rft_id=info:pmid/32461651&rft_galeid=A625089929&rfr_iscdi=true