Epigenetic Responses to Acute Resistance Exercise in Trained vs. Sedentary Men
ABSTRACTBagley, JR, Burghardt, KJ, McManus, R, Howlett, B, Costa, PB, Coburn, JW, Arevalo, JA, Malek, MH, and Galpin, AJ. Epigenetic responses to acute resistance exercise in trained vs. sedentary men. J Strength Cond Res 34(6)1574–1580, 2020—Acute resistance exercise (RE) alters DNA methylation, an...
Gespeichert in:
Veröffentlicht in: | Journal of strength and conditioning research 2020-06, Vol.34 (6), p.1574-1580 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1580 |
---|---|
container_issue | 6 |
container_start_page | 1574 |
container_title | Journal of strength and conditioning research |
container_volume | 34 |
creator | Bagley, James R. Burghardt, Kyle J. McManus, Ryan Howlett, Bradley Costa, Pablo B. Coburn, Jared W. Arevalo, Jose A. Malek, Moh H. Galpin, Andrew J. |
description | ABSTRACTBagley, JR, Burghardt, KJ, McManus, R, Howlett, B, Costa, PB, Coburn, JW, Arevalo, JA, Malek, MH, and Galpin, AJ. Epigenetic responses to acute resistance exercise in trained vs. sedentary men. J Strength Cond Res 34(6)1574–1580, 2020—Acute resistance exercise (RE) alters DNA methylation, an epigenetic process that influences gene expression and regulates skeletal muscle adaptation. This aspect of cellular remodeling is poorly understood, especially in resistance-trained (RT) individuals. The study purpose was to examine DNA methylation in response to acute RE in RT and sedentary (SED) young men, specifically targeting genes responsible for metabolic, inflammatory, and hypertrophic muscle adaptations. Vastus lateralis biopsies were performed before (baseline), 30 minutes after, and 4 hours after an acute RE bout (3 × 10 repetitions at 70% 1 repetition maximum [1RM] leg press and leg extension) in 11 RT (mean ± SEMage = 26.1 ± 1.0 years; body mass = 84.3 ± 0.2 kg; leg press 1RM = 412.6 ± 25.9 kg) and 8 SED (age = 22.9 ± 1.1 years; body mass = 75.6 ± 0.3 kg; leg press 1RM = 164.8 ± 22.5 kg) men. DNA methylation was analyzed through methylation sensitive high-resolution melting using real-time polymerase chain reaction. Separate 2 (group) × 3 (time) repeated-measures analyses of variance and analyses of covariance were performed to examine changes in DNA methylation for each target gene. Results showed that acute RE (a) hypomethylated LINE-1 (measure of global methylation) in RT but not SED, (b) hypermethylated metabolic genes (GPAM and SREBF2) in RT, while lowering SREBF2 methylation in SED, and (c) did not affect methylation of genes associated with inflammation (IL-6 and TNF-α) or hypertrophy (mTOR and AKT1). However, basal IL-6 and TNF-α were lower in SED compared with RT. These findings indicate the same RE stimulus can illicit different epigenetic responses in RT vs. SED men and provides a molecular mechanism underpinning the need for differential training stimuli based on subject training backgrounds. |
doi_str_mv | 10.1519/JSC.0000000000003185 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2407317289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2411780150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4755-bac7c1e64c698670280ad9b166a0ee7d29f0cb53d604b322d9d4e5d98abb54ec3</originalsourceid><addsrcrecordid>eNqFkF1rFDEUhkNRbK3-g1IC3ngz6zn5mGQuy7J-US209XrIJGfbaWczazJj9d-bsrVILzQQEsLzvpw8jB0hLFBj8-7zxXIBfy2JVu-xA9RSVkpY86zcoVaVBcR99jLnGwChtZYv2L4USjcK5QH7utr2VxRp6j0_p7wdY6bMp5Gf-Hmi-6c-Ty564quflHyfifeRXybXRwr8R17wCwoUJ5d-8S8UX7Hnazdkev1wHrJv71eXy4_V6dmHT8uT08oro3XVOW88Uq183djagLDgQtNhXTsgMkE0a_CdlqEG1UkhQhMU6dBY13VakZeH7O2ud5vG7zPlqd302dMwuEjjnFuhwEg0wjYFffMEvRnnFMt0hUI0xY-GQqkd5dOYc6J1u039pvyqRWjvfbfFd_vUd4kdP5TP3YbCY-iP4ALYHXA3DhOlfDvMd5Taa3LDdP2_bvWPKAAKJYytBAiAuoSqshHlbxOmmjM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2411780150</pqid></control><display><type>article</type><title>Epigenetic Responses to Acute Resistance Exercise in Trained vs. Sedentary Men</title><source>Journals@Ovid Ovid Autoload</source><source>MEDLINE</source><creator>Bagley, James R. ; Burghardt, Kyle J. ; McManus, Ryan ; Howlett, Bradley ; Costa, Pablo B. ; Coburn, Jared W. ; Arevalo, Jose A. ; Malek, Moh H. ; Galpin, Andrew J.</creator><creatorcontrib>Bagley, James R. ; Burghardt, Kyle J. ; McManus, Ryan ; Howlett, Bradley ; Costa, Pablo B. ; Coburn, Jared W. ; Arevalo, Jose A. ; Malek, Moh H. ; Galpin, Andrew J.</creatorcontrib><description>ABSTRACTBagley, JR, Burghardt, KJ, McManus, R, Howlett, B, Costa, PB, Coburn, JW, Arevalo, JA, Malek, MH, and Galpin, AJ. Epigenetic responses to acute resistance exercise in trained vs. sedentary men. J Strength Cond Res 34(6)1574–1580, 2020—Acute resistance exercise (RE) alters DNA methylation, an epigenetic process that influences gene expression and regulates skeletal muscle adaptation. This aspect of cellular remodeling is poorly understood, especially in resistance-trained (RT) individuals. The study purpose was to examine DNA methylation in response to acute RE in RT and sedentary (SED) young men, specifically targeting genes responsible for metabolic, inflammatory, and hypertrophic muscle adaptations. Vastus lateralis biopsies were performed before (baseline), 30 minutes after, and 4 hours after an acute RE bout (3 × 10 repetitions at 70% 1 repetition maximum [1RM] leg press and leg extension) in 11 RT (mean ± SEMage = 26.1 ± 1.0 years; body mass = 84.3 ± 0.2 kg; leg press 1RM = 412.6 ± 25.9 kg) and 8 SED (age = 22.9 ± 1.1 years; body mass = 75.6 ± 0.3 kg; leg press 1RM = 164.8 ± 22.5 kg) men. DNA methylation was analyzed through methylation sensitive high-resolution melting using real-time polymerase chain reaction. Separate 2 (group) × 3 (time) repeated-measures analyses of variance and analyses of covariance were performed to examine changes in DNA methylation for each target gene. Results showed that acute RE (a) hypomethylated LINE-1 (measure of global methylation) in RT but not SED, (b) hypermethylated metabolic genes (GPAM and SREBF2) in RT, while lowering SREBF2 methylation in SED, and (c) did not affect methylation of genes associated with inflammation (IL-6 and TNF-α) or hypertrophy (mTOR and AKT1). However, basal IL-6 and TNF-α were lower in SED compared with RT. These findings indicate the same RE stimulus can illicit different epigenetic responses in RT vs. SED men and provides a molecular mechanism underpinning the need for differential training stimuli based on subject training backgrounds.</description><identifier>ISSN: 1064-8011</identifier><identifier>EISSN: 1533-4287</identifier><identifier>DOI: 10.1519/JSC.0000000000003185</identifier><identifier>PMID: 32459413</identifier><language>eng</language><publisher>United States: Journal of Strength and Conditioning Research</publisher><subject>Adaptation ; Adult ; AKT1 protein ; Body mass ; Deoxyribonucleic acid ; DNA ; DNA Methylation ; Epigenesis, Genetic ; Exercise ; Exercise - physiology ; Gene expression ; Humans ; Hypertrophy ; Inflammation ; Interleukin 6 ; Interleukin-6 - genetics ; Leg ; Long Interspersed Nucleotide Elements - genetics ; Male ; Muscle Strength - physiology ; Muscle, Skeletal - physiology ; Muscular system ; Polymerase chain reaction ; Proto-Oncogene Proteins c-akt - genetics ; Quadriceps Muscle - physiology ; Resistance Training ; Sedentary Behavior ; Skeletal muscle ; Sterol Regulatory Element Binding Protein 2 - genetics ; Strength training ; TOR protein ; TOR Serine-Threonine Kinases - genetics ; Tumor Necrosis Factor-alpha - genetics ; Tumor necrosis factor-α ; Weight Lifting - physiology ; Young Adult</subject><ispartof>Journal of strength and conditioning research, 2020-06, Vol.34 (6), p.1574-1580</ispartof><rights>Journal of Strength and Conditioning Research</rights><rights>Copyright © 2020 by the National Strength & Conditioning Association.</rights><rights>Copyright Lippincott Williams & Wilkins Ovid Technologies Jun 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4755-bac7c1e64c698670280ad9b166a0ee7d29f0cb53d604b322d9d4e5d98abb54ec3</citedby><cites>FETCH-LOGICAL-c4755-bac7c1e64c698670280ad9b166a0ee7d29f0cb53d604b322d9d4e5d98abb54ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32459413$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bagley, James R.</creatorcontrib><creatorcontrib>Burghardt, Kyle J.</creatorcontrib><creatorcontrib>McManus, Ryan</creatorcontrib><creatorcontrib>Howlett, Bradley</creatorcontrib><creatorcontrib>Costa, Pablo B.</creatorcontrib><creatorcontrib>Coburn, Jared W.</creatorcontrib><creatorcontrib>Arevalo, Jose A.</creatorcontrib><creatorcontrib>Malek, Moh H.</creatorcontrib><creatorcontrib>Galpin, Andrew J.</creatorcontrib><title>Epigenetic Responses to Acute Resistance Exercise in Trained vs. Sedentary Men</title><title>Journal of strength and conditioning research</title><addtitle>J Strength Cond Res</addtitle><description>ABSTRACTBagley, JR, Burghardt, KJ, McManus, R, Howlett, B, Costa, PB, Coburn, JW, Arevalo, JA, Malek, MH, and Galpin, AJ. Epigenetic responses to acute resistance exercise in trained vs. sedentary men. J Strength Cond Res 34(6)1574–1580, 2020—Acute resistance exercise (RE) alters DNA methylation, an epigenetic process that influences gene expression and regulates skeletal muscle adaptation. This aspect of cellular remodeling is poorly understood, especially in resistance-trained (RT) individuals. The study purpose was to examine DNA methylation in response to acute RE in RT and sedentary (SED) young men, specifically targeting genes responsible for metabolic, inflammatory, and hypertrophic muscle adaptations. Vastus lateralis biopsies were performed before (baseline), 30 minutes after, and 4 hours after an acute RE bout (3 × 10 repetitions at 70% 1 repetition maximum [1RM] leg press and leg extension) in 11 RT (mean ± SEMage = 26.1 ± 1.0 years; body mass = 84.3 ± 0.2 kg; leg press 1RM = 412.6 ± 25.9 kg) and 8 SED (age = 22.9 ± 1.1 years; body mass = 75.6 ± 0.3 kg; leg press 1RM = 164.8 ± 22.5 kg) men. DNA methylation was analyzed through methylation sensitive high-resolution melting using real-time polymerase chain reaction. Separate 2 (group) × 3 (time) repeated-measures analyses of variance and analyses of covariance were performed to examine changes in DNA methylation for each target gene. Results showed that acute RE (a) hypomethylated LINE-1 (measure of global methylation) in RT but not SED, (b) hypermethylated metabolic genes (GPAM and SREBF2) in RT, while lowering SREBF2 methylation in SED, and (c) did not affect methylation of genes associated with inflammation (IL-6 and TNF-α) or hypertrophy (mTOR and AKT1). However, basal IL-6 and TNF-α were lower in SED compared with RT. These findings indicate the same RE stimulus can illicit different epigenetic responses in RT vs. SED men and provides a molecular mechanism underpinning the need for differential training stimuli based on subject training backgrounds.</description><subject>Adaptation</subject><subject>Adult</subject><subject>AKT1 protein</subject><subject>Body mass</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Methylation</subject><subject>Epigenesis, Genetic</subject><subject>Exercise</subject><subject>Exercise - physiology</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Hypertrophy</subject><subject>Inflammation</subject><subject>Interleukin 6</subject><subject>Interleukin-6 - genetics</subject><subject>Leg</subject><subject>Long Interspersed Nucleotide Elements - genetics</subject><subject>Male</subject><subject>Muscle Strength - physiology</subject><subject>Muscle, Skeletal - physiology</subject><subject>Muscular system</subject><subject>Polymerase chain reaction</subject><subject>Proto-Oncogene Proteins c-akt - genetics</subject><subject>Quadriceps Muscle - physiology</subject><subject>Resistance Training</subject><subject>Sedentary Behavior</subject><subject>Skeletal muscle</subject><subject>Sterol Regulatory Element Binding Protein 2 - genetics</subject><subject>Strength training</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - genetics</subject><subject>Tumor Necrosis Factor-alpha - genetics</subject><subject>Tumor necrosis factor-α</subject><subject>Weight Lifting - physiology</subject><subject>Young Adult</subject><issn>1064-8011</issn><issn>1533-4287</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkF1rFDEUhkNRbK3-g1IC3ngz6zn5mGQuy7J-US209XrIJGfbaWczazJj9d-bsrVILzQQEsLzvpw8jB0hLFBj8-7zxXIBfy2JVu-xA9RSVkpY86zcoVaVBcR99jLnGwChtZYv2L4USjcK5QH7utr2VxRp6j0_p7wdY6bMp5Gf-Hmi-6c-Ty564quflHyfifeRXybXRwr8R17wCwoUJ5d-8S8UX7Hnazdkev1wHrJv71eXy4_V6dmHT8uT08oro3XVOW88Uq183djagLDgQtNhXTsgMkE0a_CdlqEG1UkhQhMU6dBY13VakZeH7O2ud5vG7zPlqd302dMwuEjjnFuhwEg0wjYFffMEvRnnFMt0hUI0xY-GQqkd5dOYc6J1u039pvyqRWjvfbfFd_vUd4kdP5TP3YbCY-iP4ALYHXA3DhOlfDvMd5Taa3LDdP2_bvWPKAAKJYytBAiAuoSqshHlbxOmmjM</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Bagley, James R.</creator><creator>Burghardt, Kyle J.</creator><creator>McManus, Ryan</creator><creator>Howlett, Bradley</creator><creator>Costa, Pablo B.</creator><creator>Coburn, Jared W.</creator><creator>Arevalo, Jose A.</creator><creator>Malek, Moh H.</creator><creator>Galpin, Andrew J.</creator><general>Journal of Strength and Conditioning Research</general><general>Copyright by the National Strength & Conditioning Association</general><general>Lippincott Williams & Wilkins Ovid Technologies</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TS</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>20200601</creationdate><title>Epigenetic Responses to Acute Resistance Exercise in Trained vs. Sedentary Men</title><author>Bagley, James R. ; Burghardt, Kyle J. ; McManus, Ryan ; Howlett, Bradley ; Costa, Pablo B. ; Coburn, Jared W. ; Arevalo, Jose A. ; Malek, Moh H. ; Galpin, Andrew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4755-bac7c1e64c698670280ad9b166a0ee7d29f0cb53d604b322d9d4e5d98abb54ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation</topic><topic>Adult</topic><topic>AKT1 protein</topic><topic>Body mass</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Methylation</topic><topic>Epigenesis, Genetic</topic><topic>Exercise</topic><topic>Exercise - physiology</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Hypertrophy</topic><topic>Inflammation</topic><topic>Interleukin 6</topic><topic>Interleukin-6 - genetics</topic><topic>Leg</topic><topic>Long Interspersed Nucleotide Elements - genetics</topic><topic>Male</topic><topic>Muscle Strength - physiology</topic><topic>Muscle, Skeletal - physiology</topic><topic>Muscular system</topic><topic>Polymerase chain reaction</topic><topic>Proto-Oncogene Proteins c-akt - genetics</topic><topic>Quadriceps Muscle - physiology</topic><topic>Resistance Training</topic><topic>Sedentary Behavior</topic><topic>Skeletal muscle</topic><topic>Sterol Regulatory Element Binding Protein 2 - genetics</topic><topic>Strength training</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - genetics</topic><topic>Tumor Necrosis Factor-alpha - genetics</topic><topic>Tumor necrosis factor-α</topic><topic>Weight Lifting - physiology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagley, James R.</creatorcontrib><creatorcontrib>Burghardt, Kyle J.</creatorcontrib><creatorcontrib>McManus, Ryan</creatorcontrib><creatorcontrib>Howlett, Bradley</creatorcontrib><creatorcontrib>Costa, Pablo B.</creatorcontrib><creatorcontrib>Coburn, Jared W.</creatorcontrib><creatorcontrib>Arevalo, Jose A.</creatorcontrib><creatorcontrib>Malek, Moh H.</creatorcontrib><creatorcontrib>Galpin, Andrew J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Physical Education Index</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of strength and conditioning research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagley, James R.</au><au>Burghardt, Kyle J.</au><au>McManus, Ryan</au><au>Howlett, Bradley</au><au>Costa, Pablo B.</au><au>Coburn, Jared W.</au><au>Arevalo, Jose A.</au><au>Malek, Moh H.</au><au>Galpin, Andrew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epigenetic Responses to Acute Resistance Exercise in Trained vs. Sedentary Men</atitle><jtitle>Journal of strength and conditioning research</jtitle><addtitle>J Strength Cond Res</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>34</volume><issue>6</issue><spage>1574</spage><epage>1580</epage><pages>1574-1580</pages><issn>1064-8011</issn><eissn>1533-4287</eissn><abstract>ABSTRACTBagley, JR, Burghardt, KJ, McManus, R, Howlett, B, Costa, PB, Coburn, JW, Arevalo, JA, Malek, MH, and Galpin, AJ. Epigenetic responses to acute resistance exercise in trained vs. sedentary men. J Strength Cond Res 34(6)1574–1580, 2020—Acute resistance exercise (RE) alters DNA methylation, an epigenetic process that influences gene expression and regulates skeletal muscle adaptation. This aspect of cellular remodeling is poorly understood, especially in resistance-trained (RT) individuals. The study purpose was to examine DNA methylation in response to acute RE in RT and sedentary (SED) young men, specifically targeting genes responsible for metabolic, inflammatory, and hypertrophic muscle adaptations. Vastus lateralis biopsies were performed before (baseline), 30 minutes after, and 4 hours after an acute RE bout (3 × 10 repetitions at 70% 1 repetition maximum [1RM] leg press and leg extension) in 11 RT (mean ± SEMage = 26.1 ± 1.0 years; body mass = 84.3 ± 0.2 kg; leg press 1RM = 412.6 ± 25.9 kg) and 8 SED (age = 22.9 ± 1.1 years; body mass = 75.6 ± 0.3 kg; leg press 1RM = 164.8 ± 22.5 kg) men. DNA methylation was analyzed through methylation sensitive high-resolution melting using real-time polymerase chain reaction. Separate 2 (group) × 3 (time) repeated-measures analyses of variance and analyses of covariance were performed to examine changes in DNA methylation for each target gene. Results showed that acute RE (a) hypomethylated LINE-1 (measure of global methylation) in RT but not SED, (b) hypermethylated metabolic genes (GPAM and SREBF2) in RT, while lowering SREBF2 methylation in SED, and (c) did not affect methylation of genes associated with inflammation (IL-6 and TNF-α) or hypertrophy (mTOR and AKT1). However, basal IL-6 and TNF-α were lower in SED compared with RT. These findings indicate the same RE stimulus can illicit different epigenetic responses in RT vs. SED men and provides a molecular mechanism underpinning the need for differential training stimuli based on subject training backgrounds.</abstract><cop>United States</cop><pub>Journal of Strength and Conditioning Research</pub><pmid>32459413</pmid><doi>10.1519/JSC.0000000000003185</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-8011 |
ispartof | Journal of strength and conditioning research, 2020-06, Vol.34 (6), p.1574-1580 |
issn | 1064-8011 1533-4287 |
language | eng |
recordid | cdi_proquest_miscellaneous_2407317289 |
source | Journals@Ovid Ovid Autoload; MEDLINE |
subjects | Adaptation Adult AKT1 protein Body mass Deoxyribonucleic acid DNA DNA Methylation Epigenesis, Genetic Exercise Exercise - physiology Gene expression Humans Hypertrophy Inflammation Interleukin 6 Interleukin-6 - genetics Leg Long Interspersed Nucleotide Elements - genetics Male Muscle Strength - physiology Muscle, Skeletal - physiology Muscular system Polymerase chain reaction Proto-Oncogene Proteins c-akt - genetics Quadriceps Muscle - physiology Resistance Training Sedentary Behavior Skeletal muscle Sterol Regulatory Element Binding Protein 2 - genetics Strength training TOR protein TOR Serine-Threonine Kinases - genetics Tumor Necrosis Factor-alpha - genetics Tumor necrosis factor-α Weight Lifting - physiology Young Adult |
title | Epigenetic Responses to Acute Resistance Exercise in Trained vs. Sedentary Men |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T03%3A14%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epigenetic%20Responses%20to%20Acute%20Resistance%20Exercise%20in%20Trained%20vs.%20Sedentary%20Men&rft.jtitle=Journal%20of%20strength%20and%20conditioning%20research&rft.au=Bagley,%20James%20R.&rft.date=2020-06-01&rft.volume=34&rft.issue=6&rft.spage=1574&rft.epage=1580&rft.pages=1574-1580&rft.issn=1064-8011&rft.eissn=1533-4287&rft_id=info:doi/10.1519/JSC.0000000000003185&rft_dat=%3Cproquest_cross%3E2411780150%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2411780150&rft_id=info:pmid/32459413&rfr_iscdi=true |