Epigenetic Responses to Acute Resistance Exercise in Trained vs. Sedentary Men

ABSTRACTBagley, JR, Burghardt, KJ, McManus, R, Howlett, B, Costa, PB, Coburn, JW, Arevalo, JA, Malek, MH, and Galpin, AJ. Epigenetic responses to acute resistance exercise in trained vs. sedentary men. J Strength Cond Res 34(6)1574–1580, 2020—Acute resistance exercise (RE) alters DNA methylation, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of strength and conditioning research 2020-06, Vol.34 (6), p.1574-1580
Hauptverfasser: Bagley, James R., Burghardt, Kyle J., McManus, Ryan, Howlett, Bradley, Costa, Pablo B., Coburn, Jared W., Arevalo, Jose A., Malek, Moh H., Galpin, Andrew J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1580
container_issue 6
container_start_page 1574
container_title Journal of strength and conditioning research
container_volume 34
creator Bagley, James R.
Burghardt, Kyle J.
McManus, Ryan
Howlett, Bradley
Costa, Pablo B.
Coburn, Jared W.
Arevalo, Jose A.
Malek, Moh H.
Galpin, Andrew J.
description ABSTRACTBagley, JR, Burghardt, KJ, McManus, R, Howlett, B, Costa, PB, Coburn, JW, Arevalo, JA, Malek, MH, and Galpin, AJ. Epigenetic responses to acute resistance exercise in trained vs. sedentary men. J Strength Cond Res 34(6)1574–1580, 2020—Acute resistance exercise (RE) alters DNA methylation, an epigenetic process that influences gene expression and regulates skeletal muscle adaptation. This aspect of cellular remodeling is poorly understood, especially in resistance-trained (RT) individuals. The study purpose was to examine DNA methylation in response to acute RE in RT and sedentary (SED) young men, specifically targeting genes responsible for metabolic, inflammatory, and hypertrophic muscle adaptations. Vastus lateralis biopsies were performed before (baseline), 30 minutes after, and 4 hours after an acute RE bout (3 × 10 repetitions at 70% 1 repetition maximum [1RM] leg press and leg extension) in 11 RT (mean ± SEMage = 26.1 ± 1.0 years; body mass = 84.3 ± 0.2 kg; leg press 1RM = 412.6 ± 25.9 kg) and 8 SED (age = 22.9 ± 1.1 years; body mass = 75.6 ± 0.3 kg; leg press 1RM = 164.8 ± 22.5 kg) men. DNA methylation was analyzed through methylation sensitive high-resolution melting using real-time polymerase chain reaction. Separate 2 (group) × 3 (time) repeated-measures analyses of variance and analyses of covariance were performed to examine changes in DNA methylation for each target gene. Results showed that acute RE (a) hypomethylated LINE-1 (measure of global methylation) in RT but not SED, (b) hypermethylated metabolic genes (GPAM and SREBF2) in RT, while lowering SREBF2 methylation in SED, and (c) did not affect methylation of genes associated with inflammation (IL-6 and TNF-α) or hypertrophy (mTOR and AKT1). However, basal IL-6 and TNF-α were lower in SED compared with RT. These findings indicate the same RE stimulus can illicit different epigenetic responses in RT vs. SED men and provides a molecular mechanism underpinning the need for differential training stimuli based on subject training backgrounds.
doi_str_mv 10.1519/JSC.0000000000003185
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2407317289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2411780150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4755-bac7c1e64c698670280ad9b166a0ee7d29f0cb53d604b322d9d4e5d98abb54ec3</originalsourceid><addsrcrecordid>eNqFkF1rFDEUhkNRbK3-g1IC3ngz6zn5mGQuy7J-US209XrIJGfbaWczazJj9d-bsrVILzQQEsLzvpw8jB0hLFBj8-7zxXIBfy2JVu-xA9RSVkpY86zcoVaVBcR99jLnGwChtZYv2L4USjcK5QH7utr2VxRp6j0_p7wdY6bMp5Gf-Hmi-6c-Ty564quflHyfifeRXybXRwr8R17wCwoUJ5d-8S8UX7Hnazdkev1wHrJv71eXy4_V6dmHT8uT08oro3XVOW88Uq183djagLDgQtNhXTsgMkE0a_CdlqEG1UkhQhMU6dBY13VakZeH7O2ud5vG7zPlqd302dMwuEjjnFuhwEg0wjYFffMEvRnnFMt0hUI0xY-GQqkd5dOYc6J1u039pvyqRWjvfbfFd_vUd4kdP5TP3YbCY-iP4ALYHXA3DhOlfDvMd5Taa3LDdP2_bvWPKAAKJYytBAiAuoSqshHlbxOmmjM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2411780150</pqid></control><display><type>article</type><title>Epigenetic Responses to Acute Resistance Exercise in Trained vs. Sedentary Men</title><source>Journals@Ovid Ovid Autoload</source><source>MEDLINE</source><creator>Bagley, James R. ; Burghardt, Kyle J. ; McManus, Ryan ; Howlett, Bradley ; Costa, Pablo B. ; Coburn, Jared W. ; Arevalo, Jose A. ; Malek, Moh H. ; Galpin, Andrew J.</creator><creatorcontrib>Bagley, James R. ; Burghardt, Kyle J. ; McManus, Ryan ; Howlett, Bradley ; Costa, Pablo B. ; Coburn, Jared W. ; Arevalo, Jose A. ; Malek, Moh H. ; Galpin, Andrew J.</creatorcontrib><description>ABSTRACTBagley, JR, Burghardt, KJ, McManus, R, Howlett, B, Costa, PB, Coburn, JW, Arevalo, JA, Malek, MH, and Galpin, AJ. Epigenetic responses to acute resistance exercise in trained vs. sedentary men. J Strength Cond Res 34(6)1574–1580, 2020—Acute resistance exercise (RE) alters DNA methylation, an epigenetic process that influences gene expression and regulates skeletal muscle adaptation. This aspect of cellular remodeling is poorly understood, especially in resistance-trained (RT) individuals. The study purpose was to examine DNA methylation in response to acute RE in RT and sedentary (SED) young men, specifically targeting genes responsible for metabolic, inflammatory, and hypertrophic muscle adaptations. Vastus lateralis biopsies were performed before (baseline), 30 minutes after, and 4 hours after an acute RE bout (3 × 10 repetitions at 70% 1 repetition maximum [1RM] leg press and leg extension) in 11 RT (mean ± SEMage = 26.1 ± 1.0 years; body mass = 84.3 ± 0.2 kg; leg press 1RM = 412.6 ± 25.9 kg) and 8 SED (age = 22.9 ± 1.1 years; body mass = 75.6 ± 0.3 kg; leg press 1RM = 164.8 ± 22.5 kg) men. DNA methylation was analyzed through methylation sensitive high-resolution melting using real-time polymerase chain reaction. Separate 2 (group) × 3 (time) repeated-measures analyses of variance and analyses of covariance were performed to examine changes in DNA methylation for each target gene. Results showed that acute RE (a) hypomethylated LINE-1 (measure of global methylation) in RT but not SED, (b) hypermethylated metabolic genes (GPAM and SREBF2) in RT, while lowering SREBF2 methylation in SED, and (c) did not affect methylation of genes associated with inflammation (IL-6 and TNF-α) or hypertrophy (mTOR and AKT1). However, basal IL-6 and TNF-α were lower in SED compared with RT. These findings indicate the same RE stimulus can illicit different epigenetic responses in RT vs. SED men and provides a molecular mechanism underpinning the need for differential training stimuli based on subject training backgrounds.</description><identifier>ISSN: 1064-8011</identifier><identifier>EISSN: 1533-4287</identifier><identifier>DOI: 10.1519/JSC.0000000000003185</identifier><identifier>PMID: 32459413</identifier><language>eng</language><publisher>United States: Journal of Strength and Conditioning Research</publisher><subject>Adaptation ; Adult ; AKT1 protein ; Body mass ; Deoxyribonucleic acid ; DNA ; DNA Methylation ; Epigenesis, Genetic ; Exercise ; Exercise - physiology ; Gene expression ; Humans ; Hypertrophy ; Inflammation ; Interleukin 6 ; Interleukin-6 - genetics ; Leg ; Long Interspersed Nucleotide Elements - genetics ; Male ; Muscle Strength - physiology ; Muscle, Skeletal - physiology ; Muscular system ; Polymerase chain reaction ; Proto-Oncogene Proteins c-akt - genetics ; Quadriceps Muscle - physiology ; Resistance Training ; Sedentary Behavior ; Skeletal muscle ; Sterol Regulatory Element Binding Protein 2 - genetics ; Strength training ; TOR protein ; TOR Serine-Threonine Kinases - genetics ; Tumor Necrosis Factor-alpha - genetics ; Tumor necrosis factor-α ; Weight Lifting - physiology ; Young Adult</subject><ispartof>Journal of strength and conditioning research, 2020-06, Vol.34 (6), p.1574-1580</ispartof><rights>Journal of Strength and Conditioning Research</rights><rights>Copyright © 2020 by the National Strength &amp; Conditioning Association.</rights><rights>Copyright Lippincott Williams &amp; Wilkins Ovid Technologies Jun 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4755-bac7c1e64c698670280ad9b166a0ee7d29f0cb53d604b322d9d4e5d98abb54ec3</citedby><cites>FETCH-LOGICAL-c4755-bac7c1e64c698670280ad9b166a0ee7d29f0cb53d604b322d9d4e5d98abb54ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32459413$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bagley, James R.</creatorcontrib><creatorcontrib>Burghardt, Kyle J.</creatorcontrib><creatorcontrib>McManus, Ryan</creatorcontrib><creatorcontrib>Howlett, Bradley</creatorcontrib><creatorcontrib>Costa, Pablo B.</creatorcontrib><creatorcontrib>Coburn, Jared W.</creatorcontrib><creatorcontrib>Arevalo, Jose A.</creatorcontrib><creatorcontrib>Malek, Moh H.</creatorcontrib><creatorcontrib>Galpin, Andrew J.</creatorcontrib><title>Epigenetic Responses to Acute Resistance Exercise in Trained vs. Sedentary Men</title><title>Journal of strength and conditioning research</title><addtitle>J Strength Cond Res</addtitle><description>ABSTRACTBagley, JR, Burghardt, KJ, McManus, R, Howlett, B, Costa, PB, Coburn, JW, Arevalo, JA, Malek, MH, and Galpin, AJ. Epigenetic responses to acute resistance exercise in trained vs. sedentary men. J Strength Cond Res 34(6)1574–1580, 2020—Acute resistance exercise (RE) alters DNA methylation, an epigenetic process that influences gene expression and regulates skeletal muscle adaptation. This aspect of cellular remodeling is poorly understood, especially in resistance-trained (RT) individuals. The study purpose was to examine DNA methylation in response to acute RE in RT and sedentary (SED) young men, specifically targeting genes responsible for metabolic, inflammatory, and hypertrophic muscle adaptations. Vastus lateralis biopsies were performed before (baseline), 30 minutes after, and 4 hours after an acute RE bout (3 × 10 repetitions at 70% 1 repetition maximum [1RM] leg press and leg extension) in 11 RT (mean ± SEMage = 26.1 ± 1.0 years; body mass = 84.3 ± 0.2 kg; leg press 1RM = 412.6 ± 25.9 kg) and 8 SED (age = 22.9 ± 1.1 years; body mass = 75.6 ± 0.3 kg; leg press 1RM = 164.8 ± 22.5 kg) men. DNA methylation was analyzed through methylation sensitive high-resolution melting using real-time polymerase chain reaction. Separate 2 (group) × 3 (time) repeated-measures analyses of variance and analyses of covariance were performed to examine changes in DNA methylation for each target gene. Results showed that acute RE (a) hypomethylated LINE-1 (measure of global methylation) in RT but not SED, (b) hypermethylated metabolic genes (GPAM and SREBF2) in RT, while lowering SREBF2 methylation in SED, and (c) did not affect methylation of genes associated with inflammation (IL-6 and TNF-α) or hypertrophy (mTOR and AKT1). However, basal IL-6 and TNF-α were lower in SED compared with RT. These findings indicate the same RE stimulus can illicit different epigenetic responses in RT vs. SED men and provides a molecular mechanism underpinning the need for differential training stimuli based on subject training backgrounds.</description><subject>Adaptation</subject><subject>Adult</subject><subject>AKT1 protein</subject><subject>Body mass</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Methylation</subject><subject>Epigenesis, Genetic</subject><subject>Exercise</subject><subject>Exercise - physiology</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Hypertrophy</subject><subject>Inflammation</subject><subject>Interleukin 6</subject><subject>Interleukin-6 - genetics</subject><subject>Leg</subject><subject>Long Interspersed Nucleotide Elements - genetics</subject><subject>Male</subject><subject>Muscle Strength - physiology</subject><subject>Muscle, Skeletal - physiology</subject><subject>Muscular system</subject><subject>Polymerase chain reaction</subject><subject>Proto-Oncogene Proteins c-akt - genetics</subject><subject>Quadriceps Muscle - physiology</subject><subject>Resistance Training</subject><subject>Sedentary Behavior</subject><subject>Skeletal muscle</subject><subject>Sterol Regulatory Element Binding Protein 2 - genetics</subject><subject>Strength training</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - genetics</subject><subject>Tumor Necrosis Factor-alpha - genetics</subject><subject>Tumor necrosis factor-α</subject><subject>Weight Lifting - physiology</subject><subject>Young Adult</subject><issn>1064-8011</issn><issn>1533-4287</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkF1rFDEUhkNRbK3-g1IC3ngz6zn5mGQuy7J-US209XrIJGfbaWczazJj9d-bsrVILzQQEsLzvpw8jB0hLFBj8-7zxXIBfy2JVu-xA9RSVkpY86zcoVaVBcR99jLnGwChtZYv2L4USjcK5QH7utr2VxRp6j0_p7wdY6bMp5Gf-Hmi-6c-Ty564quflHyfifeRXybXRwr8R17wCwoUJ5d-8S8UX7Hnazdkev1wHrJv71eXy4_V6dmHT8uT08oro3XVOW88Uq183djagLDgQtNhXTsgMkE0a_CdlqEG1UkhQhMU6dBY13VakZeH7O2ud5vG7zPlqd302dMwuEjjnFuhwEg0wjYFffMEvRnnFMt0hUI0xY-GQqkd5dOYc6J1u039pvyqRWjvfbfFd_vUd4kdP5TP3YbCY-iP4ALYHXA3DhOlfDvMd5Taa3LDdP2_bvWPKAAKJYytBAiAuoSqshHlbxOmmjM</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Bagley, James R.</creator><creator>Burghardt, Kyle J.</creator><creator>McManus, Ryan</creator><creator>Howlett, Bradley</creator><creator>Costa, Pablo B.</creator><creator>Coburn, Jared W.</creator><creator>Arevalo, Jose A.</creator><creator>Malek, Moh H.</creator><creator>Galpin, Andrew J.</creator><general>Journal of Strength and Conditioning Research</general><general>Copyright by the National Strength &amp; Conditioning Association</general><general>Lippincott Williams &amp; Wilkins Ovid Technologies</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TS</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>20200601</creationdate><title>Epigenetic Responses to Acute Resistance Exercise in Trained vs. Sedentary Men</title><author>Bagley, James R. ; Burghardt, Kyle J. ; McManus, Ryan ; Howlett, Bradley ; Costa, Pablo B. ; Coburn, Jared W. ; Arevalo, Jose A. ; Malek, Moh H. ; Galpin, Andrew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4755-bac7c1e64c698670280ad9b166a0ee7d29f0cb53d604b322d9d4e5d98abb54ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation</topic><topic>Adult</topic><topic>AKT1 protein</topic><topic>Body mass</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Methylation</topic><topic>Epigenesis, Genetic</topic><topic>Exercise</topic><topic>Exercise - physiology</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Hypertrophy</topic><topic>Inflammation</topic><topic>Interleukin 6</topic><topic>Interleukin-6 - genetics</topic><topic>Leg</topic><topic>Long Interspersed Nucleotide Elements - genetics</topic><topic>Male</topic><topic>Muscle Strength - physiology</topic><topic>Muscle, Skeletal - physiology</topic><topic>Muscular system</topic><topic>Polymerase chain reaction</topic><topic>Proto-Oncogene Proteins c-akt - genetics</topic><topic>Quadriceps Muscle - physiology</topic><topic>Resistance Training</topic><topic>Sedentary Behavior</topic><topic>Skeletal muscle</topic><topic>Sterol Regulatory Element Binding Protein 2 - genetics</topic><topic>Strength training</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - genetics</topic><topic>Tumor Necrosis Factor-alpha - genetics</topic><topic>Tumor necrosis factor-α</topic><topic>Weight Lifting - physiology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagley, James R.</creatorcontrib><creatorcontrib>Burghardt, Kyle J.</creatorcontrib><creatorcontrib>McManus, Ryan</creatorcontrib><creatorcontrib>Howlett, Bradley</creatorcontrib><creatorcontrib>Costa, Pablo B.</creatorcontrib><creatorcontrib>Coburn, Jared W.</creatorcontrib><creatorcontrib>Arevalo, Jose A.</creatorcontrib><creatorcontrib>Malek, Moh H.</creatorcontrib><creatorcontrib>Galpin, Andrew J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Physical Education Index</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of strength and conditioning research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagley, James R.</au><au>Burghardt, Kyle J.</au><au>McManus, Ryan</au><au>Howlett, Bradley</au><au>Costa, Pablo B.</au><au>Coburn, Jared W.</au><au>Arevalo, Jose A.</au><au>Malek, Moh H.</au><au>Galpin, Andrew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epigenetic Responses to Acute Resistance Exercise in Trained vs. Sedentary Men</atitle><jtitle>Journal of strength and conditioning research</jtitle><addtitle>J Strength Cond Res</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>34</volume><issue>6</issue><spage>1574</spage><epage>1580</epage><pages>1574-1580</pages><issn>1064-8011</issn><eissn>1533-4287</eissn><abstract>ABSTRACTBagley, JR, Burghardt, KJ, McManus, R, Howlett, B, Costa, PB, Coburn, JW, Arevalo, JA, Malek, MH, and Galpin, AJ. Epigenetic responses to acute resistance exercise in trained vs. sedentary men. J Strength Cond Res 34(6)1574–1580, 2020—Acute resistance exercise (RE) alters DNA methylation, an epigenetic process that influences gene expression and regulates skeletal muscle adaptation. This aspect of cellular remodeling is poorly understood, especially in resistance-trained (RT) individuals. The study purpose was to examine DNA methylation in response to acute RE in RT and sedentary (SED) young men, specifically targeting genes responsible for metabolic, inflammatory, and hypertrophic muscle adaptations. Vastus lateralis biopsies were performed before (baseline), 30 minutes after, and 4 hours after an acute RE bout (3 × 10 repetitions at 70% 1 repetition maximum [1RM] leg press and leg extension) in 11 RT (mean ± SEMage = 26.1 ± 1.0 years; body mass = 84.3 ± 0.2 kg; leg press 1RM = 412.6 ± 25.9 kg) and 8 SED (age = 22.9 ± 1.1 years; body mass = 75.6 ± 0.3 kg; leg press 1RM = 164.8 ± 22.5 kg) men. DNA methylation was analyzed through methylation sensitive high-resolution melting using real-time polymerase chain reaction. Separate 2 (group) × 3 (time) repeated-measures analyses of variance and analyses of covariance were performed to examine changes in DNA methylation for each target gene. Results showed that acute RE (a) hypomethylated LINE-1 (measure of global methylation) in RT but not SED, (b) hypermethylated metabolic genes (GPAM and SREBF2) in RT, while lowering SREBF2 methylation in SED, and (c) did not affect methylation of genes associated with inflammation (IL-6 and TNF-α) or hypertrophy (mTOR and AKT1). However, basal IL-6 and TNF-α were lower in SED compared with RT. These findings indicate the same RE stimulus can illicit different epigenetic responses in RT vs. SED men and provides a molecular mechanism underpinning the need for differential training stimuli based on subject training backgrounds.</abstract><cop>United States</cop><pub>Journal of Strength and Conditioning Research</pub><pmid>32459413</pmid><doi>10.1519/JSC.0000000000003185</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1064-8011
ispartof Journal of strength and conditioning research, 2020-06, Vol.34 (6), p.1574-1580
issn 1064-8011
1533-4287
language eng
recordid cdi_proquest_miscellaneous_2407317289
source Journals@Ovid Ovid Autoload; MEDLINE
subjects Adaptation
Adult
AKT1 protein
Body mass
Deoxyribonucleic acid
DNA
DNA Methylation
Epigenesis, Genetic
Exercise
Exercise - physiology
Gene expression
Humans
Hypertrophy
Inflammation
Interleukin 6
Interleukin-6 - genetics
Leg
Long Interspersed Nucleotide Elements - genetics
Male
Muscle Strength - physiology
Muscle, Skeletal - physiology
Muscular system
Polymerase chain reaction
Proto-Oncogene Proteins c-akt - genetics
Quadriceps Muscle - physiology
Resistance Training
Sedentary Behavior
Skeletal muscle
Sterol Regulatory Element Binding Protein 2 - genetics
Strength training
TOR protein
TOR Serine-Threonine Kinases - genetics
Tumor Necrosis Factor-alpha - genetics
Tumor necrosis factor-α
Weight Lifting - physiology
Young Adult
title Epigenetic Responses to Acute Resistance Exercise in Trained vs. Sedentary Men
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T03%3A14%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epigenetic%20Responses%20to%20Acute%20Resistance%20Exercise%20in%20Trained%20vs.%20Sedentary%20Men&rft.jtitle=Journal%20of%20strength%20and%20conditioning%20research&rft.au=Bagley,%20James%20R.&rft.date=2020-06-01&rft.volume=34&rft.issue=6&rft.spage=1574&rft.epage=1580&rft.pages=1574-1580&rft.issn=1064-8011&rft.eissn=1533-4287&rft_id=info:doi/10.1519/JSC.0000000000003185&rft_dat=%3Cproquest_cross%3E2411780150%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2411780150&rft_id=info:pmid/32459413&rfr_iscdi=true