Field-Assisted Alignment of Cellulose Nanofibrils in a Continuous Flow-Focusing System

The continuous production of macroscale filaments of 17 μm in diameter comprising aligned TEMPO-oxidized cellulose nanofibrils (CNFs) is conducted using a field-assisted flow-focusing process. The effect of an AC external field on the material’s structure becomes significant at a certain voltage, be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-06, Vol.12 (25), p.28568-28575
Hauptverfasser: Wise, Heather G, Takana, Hidemasa, Ohuchi, Fumio, Dichiara, Anthony B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28575
container_issue 25
container_start_page 28568
container_title ACS applied materials & interfaces
container_volume 12
creator Wise, Heather G
Takana, Hidemasa
Ohuchi, Fumio
Dichiara, Anthony B
description The continuous production of macroscale filaments of 17 μm in diameter comprising aligned TEMPO-oxidized cellulose nanofibrils (CNFs) is conducted using a field-assisted flow-focusing process. The effect of an AC external field on the material’s structure becomes significant at a certain voltage, beyond which augmentations of the CNF orientation factor up to 16% are obtained. Results indicate that the electric field significantly contributes to improve the CNF ordering in the bulk, while the CNF alignment on the filament surface is only slightly affected by the applied voltage. X-ray diffraction shows that CNFs are densely packed anisotropically in the plane parallel to the filament axis without any preferential out of plane orientation. The improved nanoscale ordering combined with the tight CNF packing yields impressive enhancements in mechanical properties, with stiffness up to 25 GPa and more than 63% (up to 260 MPa), 46% (up to 2.8%), and 120% (up to 4.7 kJ/m3) increase in tensile strength, strain-to-failure, and toughness, respectively. This study demonstrates for the first time the control over the structural ordering of anisotropic nanoparticles in a dynamic system using an electric field, which can have important implications for the development of sustainable alternatives to synthetic textiles.
doi_str_mv 10.1021/acsami.0c07272
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2407314763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407314763</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-c363fd960178454f504304f0ffeedaef879ac3c50f70a1d31d8bb18808d9f4da3</originalsourceid><addsrcrecordid>eNp1kDtPwzAURi0EoqWwMiKPCCnFzzzGKiKAVMHAY42c2K5cOXaJE6H-e4xSujHdO5zv6N4PgGuMlhgRfC_aIDqzRC3KSEZOwBwXjCU54eT0uDM2AxchbBFKKUH8HMwoYZxyTubgszLKymQVggmDknBlzcZ1yg3Qa1gqa0frg4Ivwnltmt7YAI2DApbeDcaNfgywsv47qXw7BuM28G0fPd0lONPCBnV1mAvwUT28l0_J-vXxuVytE0GLdEhamlItixThLGecaY4YRUwjrZWSQuk8K0RLW450hgSWFMu8aXCeo1wWmklBF-B28u56_zWqMNSdCW08WzgVb6sJQxnFLEtpRJcT2vY-hF7petebTvT7GqP6t8t66rI-dBkDNwf32HRKHvG_8iJwNwExWG_92Lv46n-2HwksfwI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407314763</pqid></control><display><type>article</type><title>Field-Assisted Alignment of Cellulose Nanofibrils in a Continuous Flow-Focusing System</title><source>American Chemical Society Journals</source><creator>Wise, Heather G ; Takana, Hidemasa ; Ohuchi, Fumio ; Dichiara, Anthony B</creator><creatorcontrib>Wise, Heather G ; Takana, Hidemasa ; Ohuchi, Fumio ; Dichiara, Anthony B</creatorcontrib><description>The continuous production of macroscale filaments of 17 μm in diameter comprising aligned TEMPO-oxidized cellulose nanofibrils (CNFs) is conducted using a field-assisted flow-focusing process. The effect of an AC external field on the material’s structure becomes significant at a certain voltage, beyond which augmentations of the CNF orientation factor up to 16% are obtained. Results indicate that the electric field significantly contributes to improve the CNF ordering in the bulk, while the CNF alignment on the filament surface is only slightly affected by the applied voltage. X-ray diffraction shows that CNFs are densely packed anisotropically in the plane parallel to the filament axis without any preferential out of plane orientation. The improved nanoscale ordering combined with the tight CNF packing yields impressive enhancements in mechanical properties, with stiffness up to 25 GPa and more than 63% (up to 260 MPa), 46% (up to 2.8%), and 120% (up to 4.7 kJ/m3) increase in tensile strength, strain-to-failure, and toughness, respectively. This study demonstrates for the first time the control over the structural ordering of anisotropic nanoparticles in a dynamic system using an electric field, which can have important implications for the development of sustainable alternatives to synthetic textiles.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c07272</identifier><identifier>PMID: 32453552</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Functional Nanostructured Materials (including low-D carbon)</subject><ispartof>ACS applied materials &amp; interfaces, 2020-06, Vol.12 (25), p.28568-28575</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-c363fd960178454f504304f0ffeedaef879ac3c50f70a1d31d8bb18808d9f4da3</citedby><cites>FETCH-LOGICAL-a396t-c363fd960178454f504304f0ffeedaef879ac3c50f70a1d31d8bb18808d9f4da3</cites><orcidid>0000-0002-7627-1048 ; 0000-0002-3118-7029</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c07272$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c07272$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32453552$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wise, Heather G</creatorcontrib><creatorcontrib>Takana, Hidemasa</creatorcontrib><creatorcontrib>Ohuchi, Fumio</creatorcontrib><creatorcontrib>Dichiara, Anthony B</creatorcontrib><title>Field-Assisted Alignment of Cellulose Nanofibrils in a Continuous Flow-Focusing System</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The continuous production of macroscale filaments of 17 μm in diameter comprising aligned TEMPO-oxidized cellulose nanofibrils (CNFs) is conducted using a field-assisted flow-focusing process. The effect of an AC external field on the material’s structure becomes significant at a certain voltage, beyond which augmentations of the CNF orientation factor up to 16% are obtained. Results indicate that the electric field significantly contributes to improve the CNF ordering in the bulk, while the CNF alignment on the filament surface is only slightly affected by the applied voltage. X-ray diffraction shows that CNFs are densely packed anisotropically in the plane parallel to the filament axis without any preferential out of plane orientation. The improved nanoscale ordering combined with the tight CNF packing yields impressive enhancements in mechanical properties, with stiffness up to 25 GPa and more than 63% (up to 260 MPa), 46% (up to 2.8%), and 120% (up to 4.7 kJ/m3) increase in tensile strength, strain-to-failure, and toughness, respectively. This study demonstrates for the first time the control over the structural ordering of anisotropic nanoparticles in a dynamic system using an electric field, which can have important implications for the development of sustainable alternatives to synthetic textiles.</description><subject>Functional Nanostructured Materials (including low-D carbon)</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAURi0EoqWwMiKPCCnFzzzGKiKAVMHAY42c2K5cOXaJE6H-e4xSujHdO5zv6N4PgGuMlhgRfC_aIDqzRC3KSEZOwBwXjCU54eT0uDM2AxchbBFKKUH8HMwoYZxyTubgszLKymQVggmDknBlzcZ1yg3Qa1gqa0frg4Ivwnltmt7YAI2DApbeDcaNfgywsv47qXw7BuM28G0fPd0lONPCBnV1mAvwUT28l0_J-vXxuVytE0GLdEhamlItixThLGecaY4YRUwjrZWSQuk8K0RLW450hgSWFMu8aXCeo1wWmklBF-B28u56_zWqMNSdCW08WzgVb6sJQxnFLEtpRJcT2vY-hF7petebTvT7GqP6t8t66rI-dBkDNwf32HRKHvG_8iJwNwExWG_92Lv46n-2HwksfwI</recordid><startdate>20200624</startdate><enddate>20200624</enddate><creator>Wise, Heather G</creator><creator>Takana, Hidemasa</creator><creator>Ohuchi, Fumio</creator><creator>Dichiara, Anthony B</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7627-1048</orcidid><orcidid>https://orcid.org/0000-0002-3118-7029</orcidid></search><sort><creationdate>20200624</creationdate><title>Field-Assisted Alignment of Cellulose Nanofibrils in a Continuous Flow-Focusing System</title><author>Wise, Heather G ; Takana, Hidemasa ; Ohuchi, Fumio ; Dichiara, Anthony B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-c363fd960178454f504304f0ffeedaef879ac3c50f70a1d31d8bb18808d9f4da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Functional Nanostructured Materials (including low-D carbon)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wise, Heather G</creatorcontrib><creatorcontrib>Takana, Hidemasa</creatorcontrib><creatorcontrib>Ohuchi, Fumio</creatorcontrib><creatorcontrib>Dichiara, Anthony B</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wise, Heather G</au><au>Takana, Hidemasa</au><au>Ohuchi, Fumio</au><au>Dichiara, Anthony B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Field-Assisted Alignment of Cellulose Nanofibrils in a Continuous Flow-Focusing System</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-06-24</date><risdate>2020</risdate><volume>12</volume><issue>25</issue><spage>28568</spage><epage>28575</epage><pages>28568-28575</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The continuous production of macroscale filaments of 17 μm in diameter comprising aligned TEMPO-oxidized cellulose nanofibrils (CNFs) is conducted using a field-assisted flow-focusing process. The effect of an AC external field on the material’s structure becomes significant at a certain voltage, beyond which augmentations of the CNF orientation factor up to 16% are obtained. Results indicate that the electric field significantly contributes to improve the CNF ordering in the bulk, while the CNF alignment on the filament surface is only slightly affected by the applied voltage. X-ray diffraction shows that CNFs are densely packed anisotropically in the plane parallel to the filament axis without any preferential out of plane orientation. The improved nanoscale ordering combined with the tight CNF packing yields impressive enhancements in mechanical properties, with stiffness up to 25 GPa and more than 63% (up to 260 MPa), 46% (up to 2.8%), and 120% (up to 4.7 kJ/m3) increase in tensile strength, strain-to-failure, and toughness, respectively. This study demonstrates for the first time the control over the structural ordering of anisotropic nanoparticles in a dynamic system using an electric field, which can have important implications for the development of sustainable alternatives to synthetic textiles.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32453552</pmid><doi>10.1021/acsami.0c07272</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7627-1048</orcidid><orcidid>https://orcid.org/0000-0002-3118-7029</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2020-06, Vol.12 (25), p.28568-28575
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2407314763
source American Chemical Society Journals
subjects Functional Nanostructured Materials (including low-D carbon)
title Field-Assisted Alignment of Cellulose Nanofibrils in a Continuous Flow-Focusing System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A43%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Field-Assisted%20Alignment%20of%20Cellulose%20Nanofibrils%20in%20a%20Continuous%20Flow-Focusing%20System&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Wise,%20Heather%20G&rft.date=2020-06-24&rft.volume=12&rft.issue=25&rft.spage=28568&rft.epage=28575&rft.pages=28568-28575&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c07272&rft_dat=%3Cproquest_cross%3E2407314763%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407314763&rft_id=info:pmid/32453552&rfr_iscdi=true