Olfactory signals from the main olfactory bulb converge with taste information from the chorda tympani nerve in the agranular insular cortex of rats
Gustation and olfaction are integrated into flavor, which contribute to detection and identification of foods. We focused on the insular cortex (IC), as a possible center of flavor integration, because the IC has been reported to receive olfactory in addition to gustatory inputs. In the present repo...
Gespeichert in:
Veröffentlicht in: | Pflügers Archiv 2020-06, Vol.472 (6), p.721-732 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 732 |
---|---|
container_issue | 6 |
container_start_page | 721 |
container_title | Pflügers Archiv |
container_volume | 472 |
creator | Mizoguchi, Naoko Muramoto, Kazuyo Kobayashi, Masayuki |
description | Gustation and olfaction are integrated into flavor, which contribute to detection and identification of foods. We focused on the insular cortex (IC), as a possible center of flavor integration, because the IC has been reported to receive olfactory in addition to gustatory inputs. In the present report, we tested the hypothesis that these two chemosensory signals are integrated in the IC. We examined the spatiotemporal dynamics of cortical responses induced by stimulating the chorda tympani nerve (CT) and the main olfactory bulb (mOB) in male Sprague-Dawley rats by in vivo optical imaging with a voltage-sensitive dye (VSD). CT stimulation elicited responses in the rostral part of the dysgranular IC (DI), while responses to mOB stimulation were observed in the agranular IC (AI) as well as in the piriform cortex (PC). To characterize the temporal specificity of these responses, we performed combined mOB and CT stimulation with three different timings: simultaneous stimulation and the stimulation of the mOB 150 ms before or after CT stimulation. Simultaneous stimulation increased the signal amplitude in AI additively. These results indicate that the AI and DI contribute to the convergence of gustatory and olfactory information. Of them the DI predominantly processes the taste information, whereas the AI is more sensitive to the olfactory signal. |
doi_str_mv | 10.1007/s00424-020-02399-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2407313681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2412653065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-a144c2728c9154f4a7b6c76d9fc995a3e6f66006a8f2d025d92082500385cc073</originalsourceid><addsrcrecordid>eNp9kc9OGzEQxq2KqqSBF-gBWeLSy5bxn_V6jxWiUCkSF3q2HK-dLNq1g-0l5D36wHUSClIPPYxG8vf7Zqz5EPpC4BsBaK4SAKe8AgqlWNtW2w9oRjijFQXCTtAMgJFKNEKeos8pPQIA5ZJ-QqeM8lqCbGbo9_3gtMkh7nDqV14PCbsYRpzXFo-69zi86ctpWGIT_LONK4u3fV7jrFO2uPcuxFHnPvh3s1mH2Gmcd-NG-x57G5_35EHTq6j9NOhYHtKhmxCzfcHB4ahzOkMfXfmJPX_tc_Trx83D9V21uL_9ef19URnW1LnShHNDGypNS2ruuG6WwjSia51p21ozK5wQAEJLRzugdddSkLQuV5G1MdCwOfp6nLuJ4WmyKauxT8YOg_Y2TElRXiDChCQFvfwHfQxT3N-rUISKmkGpOaJHysSQUrRObWI_6rhTBNQ-M3XMTJXM1CEztS2mi9fR03K03Zvlb0gFYEcgFcmvbHzf_Z-xfwAWg6P4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412653065</pqid></control><display><type>article</type><title>Olfactory signals from the main olfactory bulb converge with taste information from the chorda tympani nerve in the agranular insular cortex of rats</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Mizoguchi, Naoko ; Muramoto, Kazuyo ; Kobayashi, Masayuki</creator><creatorcontrib>Mizoguchi, Naoko ; Muramoto, Kazuyo ; Kobayashi, Masayuki</creatorcontrib><description>Gustation and olfaction are integrated into flavor, which contribute to detection and identification of foods. We focused on the insular cortex (IC), as a possible center of flavor integration, because the IC has been reported to receive olfactory in addition to gustatory inputs. In the present report, we tested the hypothesis that these two chemosensory signals are integrated in the IC. We examined the spatiotemporal dynamics of cortical responses induced by stimulating the chorda tympani nerve (CT) and the main olfactory bulb (mOB) in male Sprague-Dawley rats by in vivo optical imaging with a voltage-sensitive dye (VSD). CT stimulation elicited responses in the rostral part of the dysgranular IC (DI), while responses to mOB stimulation were observed in the agranular IC (AI) as well as in the piriform cortex (PC). To characterize the temporal specificity of these responses, we performed combined mOB and CT stimulation with three different timings: simultaneous stimulation and the stimulation of the mOB 150 ms before or after CT stimulation. Simultaneous stimulation increased the signal amplitude in AI additively. These results indicate that the AI and DI contribute to the convergence of gustatory and olfactory information. Of them the DI predominantly processes the taste information, whereas the AI is more sensitive to the olfactory signal.</description><identifier>ISSN: 0031-6768</identifier><identifier>EISSN: 1432-2013</identifier><identifier>DOI: 10.1007/s00424-020-02399-w</identifier><identifier>PMID: 32458087</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animals ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Cerebral Cortex - physiology ; Chemoreception ; Chorda tympani ; Chorda Tympani Nerve - physiology ; Computed tomography ; Cortex (insular) ; Cortex (piriform) ; Electric Stimulation - methods ; Flavor ; Human Physiology ; Information processing ; Male ; Molecular Medicine ; Neuroimaging ; Neurons - physiology ; Neurosciences ; Olfaction ; Olfactory bulb ; Olfactory Bulb - physiology ; Rats ; Rats, Sprague-Dawley ; Receptors ; Rodents ; Sensory Physiology ; Smell ; Smell - physiology ; Taste ; Taste - physiology ; Taste Perception - physiology ; Temporal cortex</subject><ispartof>Pflügers Archiv, 2020-06, Vol.472 (6), p.721-732</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-a144c2728c9154f4a7b6c76d9fc995a3e6f66006a8f2d025d92082500385cc073</citedby><cites>FETCH-LOGICAL-c375t-a144c2728c9154f4a7b6c76d9fc995a3e6f66006a8f2d025d92082500385cc073</cites><orcidid>0000-0003-4598-208X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00424-020-02399-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00424-020-02399-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32458087$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mizoguchi, Naoko</creatorcontrib><creatorcontrib>Muramoto, Kazuyo</creatorcontrib><creatorcontrib>Kobayashi, Masayuki</creatorcontrib><title>Olfactory signals from the main olfactory bulb converge with taste information from the chorda tympani nerve in the agranular insular cortex of rats</title><title>Pflügers Archiv</title><addtitle>Pflugers Arch - Eur J Physiol</addtitle><addtitle>Pflugers Arch</addtitle><description>Gustation and olfaction are integrated into flavor, which contribute to detection and identification of foods. We focused on the insular cortex (IC), as a possible center of flavor integration, because the IC has been reported to receive olfactory in addition to gustatory inputs. In the present report, we tested the hypothesis that these two chemosensory signals are integrated in the IC. We examined the spatiotemporal dynamics of cortical responses induced by stimulating the chorda tympani nerve (CT) and the main olfactory bulb (mOB) in male Sprague-Dawley rats by in vivo optical imaging with a voltage-sensitive dye (VSD). CT stimulation elicited responses in the rostral part of the dysgranular IC (DI), while responses to mOB stimulation were observed in the agranular IC (AI) as well as in the piriform cortex (PC). To characterize the temporal specificity of these responses, we performed combined mOB and CT stimulation with three different timings: simultaneous stimulation and the stimulation of the mOB 150 ms before or after CT stimulation. Simultaneous stimulation increased the signal amplitude in AI additively. These results indicate that the AI and DI contribute to the convergence of gustatory and olfactory information. Of them the DI predominantly processes the taste information, whereas the AI is more sensitive to the olfactory signal.</description><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Cerebral Cortex - physiology</subject><subject>Chemoreception</subject><subject>Chorda tympani</subject><subject>Chorda Tympani Nerve - physiology</subject><subject>Computed tomography</subject><subject>Cortex (insular)</subject><subject>Cortex (piriform)</subject><subject>Electric Stimulation - methods</subject><subject>Flavor</subject><subject>Human Physiology</subject><subject>Information processing</subject><subject>Male</subject><subject>Molecular Medicine</subject><subject>Neuroimaging</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Olfaction</subject><subject>Olfactory bulb</subject><subject>Olfactory Bulb - physiology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors</subject><subject>Rodents</subject><subject>Sensory Physiology</subject><subject>Smell</subject><subject>Smell - physiology</subject><subject>Taste</subject><subject>Taste - physiology</subject><subject>Taste Perception - physiology</subject><subject>Temporal cortex</subject><issn>0031-6768</issn><issn>1432-2013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc9OGzEQxq2KqqSBF-gBWeLSy5bxn_V6jxWiUCkSF3q2HK-dLNq1g-0l5D36wHUSClIPPYxG8vf7Zqz5EPpC4BsBaK4SAKe8AgqlWNtW2w9oRjijFQXCTtAMgJFKNEKeos8pPQIA5ZJ-QqeM8lqCbGbo9_3gtMkh7nDqV14PCbsYRpzXFo-69zi86ctpWGIT_LONK4u3fV7jrFO2uPcuxFHnPvh3s1mH2Gmcd-NG-x57G5_35EHTq6j9NOhYHtKhmxCzfcHB4ahzOkMfXfmJPX_tc_Trx83D9V21uL_9ef19URnW1LnShHNDGypNS2ruuG6WwjSia51p21ozK5wQAEJLRzugdddSkLQuV5G1MdCwOfp6nLuJ4WmyKauxT8YOg_Y2TElRXiDChCQFvfwHfQxT3N-rUISKmkGpOaJHysSQUrRObWI_6rhTBNQ-M3XMTJXM1CEztS2mi9fR03K03Zvlb0gFYEcgFcmvbHzf_Z-xfwAWg6P4</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Mizoguchi, Naoko</creator><creator>Muramoto, Kazuyo</creator><creator>Kobayashi, Masayuki</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4598-208X</orcidid></search><sort><creationdate>20200601</creationdate><title>Olfactory signals from the main olfactory bulb converge with taste information from the chorda tympani nerve in the agranular insular cortex of rats</title><author>Mizoguchi, Naoko ; Muramoto, Kazuyo ; Kobayashi, Masayuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-a144c2728c9154f4a7b6c76d9fc995a3e6f66006a8f2d025d92082500385cc073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Cerebral Cortex - physiology</topic><topic>Chemoreception</topic><topic>Chorda tympani</topic><topic>Chorda Tympani Nerve - physiology</topic><topic>Computed tomography</topic><topic>Cortex (insular)</topic><topic>Cortex (piriform)</topic><topic>Electric Stimulation - methods</topic><topic>Flavor</topic><topic>Human Physiology</topic><topic>Information processing</topic><topic>Male</topic><topic>Molecular Medicine</topic><topic>Neuroimaging</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Olfaction</topic><topic>Olfactory bulb</topic><topic>Olfactory Bulb - physiology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors</topic><topic>Rodents</topic><topic>Sensory Physiology</topic><topic>Smell</topic><topic>Smell - physiology</topic><topic>Taste</topic><topic>Taste - physiology</topic><topic>Taste Perception - physiology</topic><topic>Temporal cortex</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mizoguchi, Naoko</creatorcontrib><creatorcontrib>Muramoto, Kazuyo</creatorcontrib><creatorcontrib>Kobayashi, Masayuki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Pflügers Archiv</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mizoguchi, Naoko</au><au>Muramoto, Kazuyo</au><au>Kobayashi, Masayuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Olfactory signals from the main olfactory bulb converge with taste information from the chorda tympani nerve in the agranular insular cortex of rats</atitle><jtitle>Pflügers Archiv</jtitle><stitle>Pflugers Arch - Eur J Physiol</stitle><addtitle>Pflugers Arch</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>472</volume><issue>6</issue><spage>721</spage><epage>732</epage><pages>721-732</pages><issn>0031-6768</issn><eissn>1432-2013</eissn><abstract>Gustation and olfaction are integrated into flavor, which contribute to detection and identification of foods. We focused on the insular cortex (IC), as a possible center of flavor integration, because the IC has been reported to receive olfactory in addition to gustatory inputs. In the present report, we tested the hypothesis that these two chemosensory signals are integrated in the IC. We examined the spatiotemporal dynamics of cortical responses induced by stimulating the chorda tympani nerve (CT) and the main olfactory bulb (mOB) in male Sprague-Dawley rats by in vivo optical imaging with a voltage-sensitive dye (VSD). CT stimulation elicited responses in the rostral part of the dysgranular IC (DI), while responses to mOB stimulation were observed in the agranular IC (AI) as well as in the piriform cortex (PC). To characterize the temporal specificity of these responses, we performed combined mOB and CT stimulation with three different timings: simultaneous stimulation and the stimulation of the mOB 150 ms before or after CT stimulation. Simultaneous stimulation increased the signal amplitude in AI additively. These results indicate that the AI and DI contribute to the convergence of gustatory and olfactory information. Of them the DI predominantly processes the taste information, whereas the AI is more sensitive to the olfactory signal.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32458087</pmid><doi>10.1007/s00424-020-02399-w</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4598-208X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-6768 |
ispartof | Pflügers Archiv, 2020-06, Vol.472 (6), p.721-732 |
issn | 0031-6768 1432-2013 |
language | eng |
recordid | cdi_proquest_miscellaneous_2407313681 |
source | MEDLINE; SpringerLink Journals |
subjects | Animals Biomedical and Life Sciences Biomedicine Cell Biology Cerebral Cortex - physiology Chemoreception Chorda tympani Chorda Tympani Nerve - physiology Computed tomography Cortex (insular) Cortex (piriform) Electric Stimulation - methods Flavor Human Physiology Information processing Male Molecular Medicine Neuroimaging Neurons - physiology Neurosciences Olfaction Olfactory bulb Olfactory Bulb - physiology Rats Rats, Sprague-Dawley Receptors Rodents Sensory Physiology Smell Smell - physiology Taste Taste - physiology Taste Perception - physiology Temporal cortex |
title | Olfactory signals from the main olfactory bulb converge with taste information from the chorda tympani nerve in the agranular insular cortex of rats |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A18%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Olfactory%20signals%20from%20the%20main%20olfactory%20bulb%20converge%20with%20taste%20information%20from%20the%20chorda%20tympani%20nerve%20in%20the%20agranular%20insular%20cortex%20of%20rats&rft.jtitle=Pfl%C3%BCgers%20Archiv&rft.au=Mizoguchi,%20Naoko&rft.date=2020-06-01&rft.volume=472&rft.issue=6&rft.spage=721&rft.epage=732&rft.pages=721-732&rft.issn=0031-6768&rft.eissn=1432-2013&rft_id=info:doi/10.1007/s00424-020-02399-w&rft_dat=%3Cproquest_cross%3E2412653065%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412653065&rft_id=info:pmid/32458087&rfr_iscdi=true |