Sodium Propionate Attenuates the Lipopolysaccharide-Induced Epithelial-Mesenchymal Transition via the PI3K/Akt/mTOR Signaling Pathway
Short-chain fatty acids (SCFAs), especially propionate, originate from the fermentation of dietary fiber in the gut and play a key role in inhibiting pulmonary inflammation. Chronic inflammation may induce an epithelial-mesenchymal transition (EMT) in alveolar epithelial cells and result in fibrotic...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural and food chemistry 2020-06, Vol.68 (24), p.6554-6563 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6563 |
---|---|
container_issue | 24 |
container_start_page | 6554 |
container_title | Journal of agricultural and food chemistry |
container_volume | 68 |
creator | Chen, Dan Qiu, Yu-Bao Gao, Zhi-Qi Wu, Ya-Xian Wan, Bin-Bin Liu, Gang Chen, Jun-Liang Zhou, Qin Yu, Ren-Qiang Pang, Qing-Feng |
description | Short-chain fatty acids (SCFAs), especially propionate, originate from the fermentation of dietary fiber in the gut and play a key role in inhibiting pulmonary inflammation. Chronic inflammation may induce an epithelial-mesenchymal transition (EMT) in alveolar epithelial cells and result in fibrotic disorders. This study was designed to investigate the beneficial effect of sodium propionate (SP) on lipopolysaccharide (LPS)-induced EMT. In cultured BEAS-2B cells, the protein expression levels of E-cadherin, α-smooth muscle actin (SMA), and vimentin were 0.66 ± 0.20, 1.44 ± 0.23, and 1.32 ± 0.21 in the LPS group vs 1.11 ± 0.36 (
< 0.05), 1.04 ± 0.30 (
< 0.05), and 0.96 ± 0.13 (
< 0.01) in the LPS + SP group (mean ± standard deviation), respectively. Meanwhile, LPS-triggered inflammatory cytokines and extracellular proteins were also reduced by SP administration in BEAS-2B cells. Moreover, SP treatment attenuated inflammation, EMT, extracellular matrix (ECM) deposition, and even fibrosis in a mouse EMT model. In terms of mechanism, LPS-treated BEAS-2B cells exhibited a higher level of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) phosphorylation, which was interrupted by SP treatment. It is worth noting that the blockade of the PI3K/Akt/mTOR signaling cascade reduced the LPS-evoked EMT process in BEAS-2B cells. These results suggest that SP can block LPS-induced EMT via inhibition of the PI3K/Akt/mTOR signaling cascade, which provides a basis for possible clinical use of SP in airway and lung diseases. |
doi_str_mv | 10.1021/acs.jafc.0c01302 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2406945024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2406945024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-e89cb40748befd1982dca49053edaa7763054d9334b80d9f6d18e60e2c4200203</originalsourceid><addsrcrecordid>eNo9kLtuGzEQRYkgRiTb6VMFLNOsNHzsqxQExREiw4Kt1IsROWtR2VeW3Bj6gPy317HsaqY49xSHsS8CZgKkmKPxsyOWZgYGhAL5gU1FLCGKhcg-simMTJTFiZiwS--PAJDFKXxiEyV1LJM0nbJ_D611Q823fdu5tsFAfBECNcP4eR4OxDeua7u2Onk05oC9sxStGzsYsnzVuZGoHFbRLXlqzOFUY8V3PTbehVHH_zr8L9mu1c_54neY17u7e_7gHhusXPPItxgOT3i6ZhclVp4-n-8V-_V9tVv-iDZ3N-vlYhMZmechoiw3ew2pzvZUWpFn0hrUOcSKLGKaJgpibXOl9D4Dm5eJFRklQNJoObYAdcW-vXq7vv0zkA9F7byhqsKG2sEXUkOS6xikHlF4RU3fet9TWXS9q7E_FQKKl_jFGL94iV-c44-Tr2f7sK_Jvg_eaqtnkhiDUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406945024</pqid></control><display><type>article</type><title>Sodium Propionate Attenuates the Lipopolysaccharide-Induced Epithelial-Mesenchymal Transition via the PI3K/Akt/mTOR Signaling Pathway</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Chen, Dan ; Qiu, Yu-Bao ; Gao, Zhi-Qi ; Wu, Ya-Xian ; Wan, Bin-Bin ; Liu, Gang ; Chen, Jun-Liang ; Zhou, Qin ; Yu, Ren-Qiang ; Pang, Qing-Feng</creator><creatorcontrib>Chen, Dan ; Qiu, Yu-Bao ; Gao, Zhi-Qi ; Wu, Ya-Xian ; Wan, Bin-Bin ; Liu, Gang ; Chen, Jun-Liang ; Zhou, Qin ; Yu, Ren-Qiang ; Pang, Qing-Feng</creatorcontrib><description>Short-chain fatty acids (SCFAs), especially propionate, originate from the fermentation of dietary fiber in the gut and play a key role in inhibiting pulmonary inflammation. Chronic inflammation may induce an epithelial-mesenchymal transition (EMT) in alveolar epithelial cells and result in fibrotic disorders. This study was designed to investigate the beneficial effect of sodium propionate (SP) on lipopolysaccharide (LPS)-induced EMT. In cultured BEAS-2B cells, the protein expression levels of E-cadherin, α-smooth muscle actin (SMA), and vimentin were 0.66 ± 0.20, 1.44 ± 0.23, and 1.32 ± 0.21 in the LPS group vs 1.11 ± 0.36 (
< 0.05), 1.04 ± 0.30 (
< 0.05), and 0.96 ± 0.13 (
< 0.01) in the LPS + SP group (mean ± standard deviation), respectively. Meanwhile, LPS-triggered inflammatory cytokines and extracellular proteins were also reduced by SP administration in BEAS-2B cells. Moreover, SP treatment attenuated inflammation, EMT, extracellular matrix (ECM) deposition, and even fibrosis in a mouse EMT model. In terms of mechanism, LPS-treated BEAS-2B cells exhibited a higher level of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) phosphorylation, which was interrupted by SP treatment. It is worth noting that the blockade of the PI3K/Akt/mTOR signaling cascade reduced the LPS-evoked EMT process in BEAS-2B cells. These results suggest that SP can block LPS-induced EMT via inhibition of the PI3K/Akt/mTOR signaling cascade, which provides a basis for possible clinical use of SP in airway and lung diseases.</description><identifier>ISSN: 0021-8561</identifier><identifier>EISSN: 1520-5118</identifier><identifier>DOI: 10.1021/acs.jafc.0c01302</identifier><identifier>PMID: 32452677</identifier><language>eng</language><publisher>United States</publisher><subject>Actins - genetics ; Actins - metabolism ; Animals ; Cadherins - genetics ; Cadherins - metabolism ; Epithelial-Mesenchymal Transition - drug effects ; Humans ; Lipopolysaccharides - pharmacology ; Lung Diseases - drug therapy ; Lung Diseases - genetics ; Lung Diseases - metabolism ; Lung Diseases - physiopathology ; Male ; Mice ; Phosphatidylinositol 3-Kinase - genetics ; Phosphatidylinositol 3-Kinase - metabolism ; Propionates - administration & dosage ; Proto-Oncogene Proteins c-akt - genetics ; Proto-Oncogene Proteins c-akt - metabolism ; Signal Transduction - drug effects ; TOR Serine-Threonine Kinases - genetics ; TOR Serine-Threonine Kinases - metabolism ; Vimentin - genetics ; Vimentin - metabolism</subject><ispartof>Journal of agricultural and food chemistry, 2020-06, Vol.68 (24), p.6554-6563</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-e89cb40748befd1982dca49053edaa7763054d9334b80d9f6d18e60e2c4200203</citedby><cites>FETCH-LOGICAL-c299t-e89cb40748befd1982dca49053edaa7763054d9334b80d9f6d18e60e2c4200203</cites><orcidid>0000-0003-0679-4780 ; 0000-0001-6529-0158</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2765,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32452677$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Dan</creatorcontrib><creatorcontrib>Qiu, Yu-Bao</creatorcontrib><creatorcontrib>Gao, Zhi-Qi</creatorcontrib><creatorcontrib>Wu, Ya-Xian</creatorcontrib><creatorcontrib>Wan, Bin-Bin</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><creatorcontrib>Chen, Jun-Liang</creatorcontrib><creatorcontrib>Zhou, Qin</creatorcontrib><creatorcontrib>Yu, Ren-Qiang</creatorcontrib><creatorcontrib>Pang, Qing-Feng</creatorcontrib><title>Sodium Propionate Attenuates the Lipopolysaccharide-Induced Epithelial-Mesenchymal Transition via the PI3K/Akt/mTOR Signaling Pathway</title><title>Journal of agricultural and food chemistry</title><addtitle>J Agric Food Chem</addtitle><description>Short-chain fatty acids (SCFAs), especially propionate, originate from the fermentation of dietary fiber in the gut and play a key role in inhibiting pulmonary inflammation. Chronic inflammation may induce an epithelial-mesenchymal transition (EMT) in alveolar epithelial cells and result in fibrotic disorders. This study was designed to investigate the beneficial effect of sodium propionate (SP) on lipopolysaccharide (LPS)-induced EMT. In cultured BEAS-2B cells, the protein expression levels of E-cadherin, α-smooth muscle actin (SMA), and vimentin were 0.66 ± 0.20, 1.44 ± 0.23, and 1.32 ± 0.21 in the LPS group vs 1.11 ± 0.36 (
< 0.05), 1.04 ± 0.30 (
< 0.05), and 0.96 ± 0.13 (
< 0.01) in the LPS + SP group (mean ± standard deviation), respectively. Meanwhile, LPS-triggered inflammatory cytokines and extracellular proteins were also reduced by SP administration in BEAS-2B cells. Moreover, SP treatment attenuated inflammation, EMT, extracellular matrix (ECM) deposition, and even fibrosis in a mouse EMT model. In terms of mechanism, LPS-treated BEAS-2B cells exhibited a higher level of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) phosphorylation, which was interrupted by SP treatment. It is worth noting that the blockade of the PI3K/Akt/mTOR signaling cascade reduced the LPS-evoked EMT process in BEAS-2B cells. These results suggest that SP can block LPS-induced EMT via inhibition of the PI3K/Akt/mTOR signaling cascade, which provides a basis for possible clinical use of SP in airway and lung diseases.</description><subject>Actins - genetics</subject><subject>Actins - metabolism</subject><subject>Animals</subject><subject>Cadherins - genetics</subject><subject>Cadherins - metabolism</subject><subject>Epithelial-Mesenchymal Transition - drug effects</subject><subject>Humans</subject><subject>Lipopolysaccharides - pharmacology</subject><subject>Lung Diseases - drug therapy</subject><subject>Lung Diseases - genetics</subject><subject>Lung Diseases - metabolism</subject><subject>Lung Diseases - physiopathology</subject><subject>Male</subject><subject>Mice</subject><subject>Phosphatidylinositol 3-Kinase - genetics</subject><subject>Phosphatidylinositol 3-Kinase - metabolism</subject><subject>Propionates - administration & dosage</subject><subject>Proto-Oncogene Proteins c-akt - genetics</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>TOR Serine-Threonine Kinases - genetics</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Vimentin - genetics</subject><subject>Vimentin - metabolism</subject><issn>0021-8561</issn><issn>1520-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kLtuGzEQRYkgRiTb6VMFLNOsNHzsqxQExREiw4Kt1IsROWtR2VeW3Bj6gPy317HsaqY49xSHsS8CZgKkmKPxsyOWZgYGhAL5gU1FLCGKhcg-simMTJTFiZiwS--PAJDFKXxiEyV1LJM0nbJ_D611Q823fdu5tsFAfBECNcP4eR4OxDeua7u2Onk05oC9sxStGzsYsnzVuZGoHFbRLXlqzOFUY8V3PTbehVHH_zr8L9mu1c_54neY17u7e_7gHhusXPPItxgOT3i6ZhclVp4-n-8V-_V9tVv-iDZ3N-vlYhMZmechoiw3ew2pzvZUWpFn0hrUOcSKLGKaJgpibXOl9D4Dm5eJFRklQNJoObYAdcW-vXq7vv0zkA9F7byhqsKG2sEXUkOS6xikHlF4RU3fet9TWXS9q7E_FQKKl_jFGL94iV-c44-Tr2f7sK_Jvg_eaqtnkhiDUQ</recordid><startdate>20200617</startdate><enddate>20200617</enddate><creator>Chen, Dan</creator><creator>Qiu, Yu-Bao</creator><creator>Gao, Zhi-Qi</creator><creator>Wu, Ya-Xian</creator><creator>Wan, Bin-Bin</creator><creator>Liu, Gang</creator><creator>Chen, Jun-Liang</creator><creator>Zhou, Qin</creator><creator>Yu, Ren-Qiang</creator><creator>Pang, Qing-Feng</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0679-4780</orcidid><orcidid>https://orcid.org/0000-0001-6529-0158</orcidid></search><sort><creationdate>20200617</creationdate><title>Sodium Propionate Attenuates the Lipopolysaccharide-Induced Epithelial-Mesenchymal Transition via the PI3K/Akt/mTOR Signaling Pathway</title><author>Chen, Dan ; Qiu, Yu-Bao ; Gao, Zhi-Qi ; Wu, Ya-Xian ; Wan, Bin-Bin ; Liu, Gang ; Chen, Jun-Liang ; Zhou, Qin ; Yu, Ren-Qiang ; Pang, Qing-Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-e89cb40748befd1982dca49053edaa7763054d9334b80d9f6d18e60e2c4200203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actins - genetics</topic><topic>Actins - metabolism</topic><topic>Animals</topic><topic>Cadherins - genetics</topic><topic>Cadherins - metabolism</topic><topic>Epithelial-Mesenchymal Transition - drug effects</topic><topic>Humans</topic><topic>Lipopolysaccharides - pharmacology</topic><topic>Lung Diseases - drug therapy</topic><topic>Lung Diseases - genetics</topic><topic>Lung Diseases - metabolism</topic><topic>Lung Diseases - physiopathology</topic><topic>Male</topic><topic>Mice</topic><topic>Phosphatidylinositol 3-Kinase - genetics</topic><topic>Phosphatidylinositol 3-Kinase - metabolism</topic><topic>Propionates - administration & dosage</topic><topic>Proto-Oncogene Proteins c-akt - genetics</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>TOR Serine-Threonine Kinases - genetics</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Vimentin - genetics</topic><topic>Vimentin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Dan</creatorcontrib><creatorcontrib>Qiu, Yu-Bao</creatorcontrib><creatorcontrib>Gao, Zhi-Qi</creatorcontrib><creatorcontrib>Wu, Ya-Xian</creatorcontrib><creatorcontrib>Wan, Bin-Bin</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><creatorcontrib>Chen, Jun-Liang</creatorcontrib><creatorcontrib>Zhou, Qin</creatorcontrib><creatorcontrib>Yu, Ren-Qiang</creatorcontrib><creatorcontrib>Pang, Qing-Feng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of agricultural and food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Dan</au><au>Qiu, Yu-Bao</au><au>Gao, Zhi-Qi</au><au>Wu, Ya-Xian</au><au>Wan, Bin-Bin</au><au>Liu, Gang</au><au>Chen, Jun-Liang</au><au>Zhou, Qin</au><au>Yu, Ren-Qiang</au><au>Pang, Qing-Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sodium Propionate Attenuates the Lipopolysaccharide-Induced Epithelial-Mesenchymal Transition via the PI3K/Akt/mTOR Signaling Pathway</atitle><jtitle>Journal of agricultural and food chemistry</jtitle><addtitle>J Agric Food Chem</addtitle><date>2020-06-17</date><risdate>2020</risdate><volume>68</volume><issue>24</issue><spage>6554</spage><epage>6563</epage><pages>6554-6563</pages><issn>0021-8561</issn><eissn>1520-5118</eissn><abstract>Short-chain fatty acids (SCFAs), especially propionate, originate from the fermentation of dietary fiber in the gut and play a key role in inhibiting pulmonary inflammation. Chronic inflammation may induce an epithelial-mesenchymal transition (EMT) in alveolar epithelial cells and result in fibrotic disorders. This study was designed to investigate the beneficial effect of sodium propionate (SP) on lipopolysaccharide (LPS)-induced EMT. In cultured BEAS-2B cells, the protein expression levels of E-cadherin, α-smooth muscle actin (SMA), and vimentin were 0.66 ± 0.20, 1.44 ± 0.23, and 1.32 ± 0.21 in the LPS group vs 1.11 ± 0.36 (
< 0.05), 1.04 ± 0.30 (
< 0.05), and 0.96 ± 0.13 (
< 0.01) in the LPS + SP group (mean ± standard deviation), respectively. Meanwhile, LPS-triggered inflammatory cytokines and extracellular proteins were also reduced by SP administration in BEAS-2B cells. Moreover, SP treatment attenuated inflammation, EMT, extracellular matrix (ECM) deposition, and even fibrosis in a mouse EMT model. In terms of mechanism, LPS-treated BEAS-2B cells exhibited a higher level of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) phosphorylation, which was interrupted by SP treatment. It is worth noting that the blockade of the PI3K/Akt/mTOR signaling cascade reduced the LPS-evoked EMT process in BEAS-2B cells. These results suggest that SP can block LPS-induced EMT via inhibition of the PI3K/Akt/mTOR signaling cascade, which provides a basis for possible clinical use of SP in airway and lung diseases.</abstract><cop>United States</cop><pmid>32452677</pmid><doi>10.1021/acs.jafc.0c01302</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0679-4780</orcidid><orcidid>https://orcid.org/0000-0001-6529-0158</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8561 |
ispartof | Journal of agricultural and food chemistry, 2020-06, Vol.68 (24), p.6554-6563 |
issn | 0021-8561 1520-5118 |
language | eng |
recordid | cdi_proquest_miscellaneous_2406945024 |
source | MEDLINE; American Chemical Society Journals |
subjects | Actins - genetics Actins - metabolism Animals Cadherins - genetics Cadherins - metabolism Epithelial-Mesenchymal Transition - drug effects Humans Lipopolysaccharides - pharmacology Lung Diseases - drug therapy Lung Diseases - genetics Lung Diseases - metabolism Lung Diseases - physiopathology Male Mice Phosphatidylinositol 3-Kinase - genetics Phosphatidylinositol 3-Kinase - metabolism Propionates - administration & dosage Proto-Oncogene Proteins c-akt - genetics Proto-Oncogene Proteins c-akt - metabolism Signal Transduction - drug effects TOR Serine-Threonine Kinases - genetics TOR Serine-Threonine Kinases - metabolism Vimentin - genetics Vimentin - metabolism |
title | Sodium Propionate Attenuates the Lipopolysaccharide-Induced Epithelial-Mesenchymal Transition via the PI3K/Akt/mTOR Signaling Pathway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A23%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sodium%20Propionate%20Attenuates%20the%20Lipopolysaccharide-Induced%20Epithelial-Mesenchymal%20Transition%20via%20the%20PI3K/Akt/mTOR%20Signaling%20Pathway&rft.jtitle=Journal%20of%20agricultural%20and%20food%20chemistry&rft.au=Chen,%20Dan&rft.date=2020-06-17&rft.volume=68&rft.issue=24&rft.spage=6554&rft.epage=6563&rft.pages=6554-6563&rft.issn=0021-8561&rft.eissn=1520-5118&rft_id=info:doi/10.1021/acs.jafc.0c01302&rft_dat=%3Cproquest_cross%3E2406945024%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406945024&rft_id=info:pmid/32452677&rfr_iscdi=true |