Feasibility of proton FLASH irradiation using a synchrocyclotron for preclinical studies

Purpose It has been recently shown that radiotherapy at ultrahigh dose rates (>40 Gy/s, FLASH) has a potential advantage in sparing healthy organs compared to that at conventional dose rates. The purpose of this work is to show the feasibility of proton FLASH irradiation using a gantry‐mounted sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2020-09, Vol.47 (9), p.4348-4355
Hauptverfasser: Darafsheh, Arash, Hao, Yao, Zwart, Townsend, Wagner, Miles, Catanzano, Daniel, Williamson, Jeffrey F., Knutson, Nels, Sun, Baozhou, Mutic, Sasa, Zhao, Tianyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4355
container_issue 9
container_start_page 4348
container_title Medical physics (Lancaster)
container_volume 47
creator Darafsheh, Arash
Hao, Yao
Zwart, Townsend
Wagner, Miles
Catanzano, Daniel
Williamson, Jeffrey F.
Knutson, Nels
Sun, Baozhou
Mutic, Sasa
Zhao, Tianyu
description Purpose It has been recently shown that radiotherapy at ultrahigh dose rates (>40 Gy/s, FLASH) has a potential advantage in sparing healthy organs compared to that at conventional dose rates. The purpose of this work is to show the feasibility of proton FLASH irradiation using a gantry‐mounted synchrocyclotron as a first step toward implementing an experimental setup for preclinical studies. Methods A clinical Mevion HYPERSCAN® synchrocyclotron was modified to deliver ultrahigh dose rates. Pulse widths of protons with 230 MeV energy were manipulated from 1 to 20 μs to deliver in conventional and ultrahigh dose rate. A boron carbide absorber was placed in the beam for range modulation. A Faraday cup was used to determine the number of protons per pulse at various dose rates. Dose rate was determined by the dose measured with a plane‐parallel ionization chamber with respect to the actual delivery time. The integral depth dose (IDD) was measured with a Bragg ionization chamber. Monte Carlo simulation was performed in TOPAS as the secondary check for the measurements. Results Maximum protons charge per pulse, measured with the Faraday cup, was 54.6 pC at 20 μs pulse width. The measured IDD agreed well with the Monte Carlo simulation. The average dose rate measured using the ionization chamber showed 101 Gy/s at the entrance and 216 Gy/s at the Bragg peak with a full width at half maximum field size of 1.2 cm. Conclusions It is feasible to deliver protons at 100 and 200 Gy/s average dose rate at the plateau and the Bragg peak, respectively, in a small ~1 cm2 field using a gantry‐mounted synchrocyclotron.
doi_str_mv 10.1002/mp.14253
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2406944977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2406944977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3873-4eb2d8c1f34c2b51a3468d97c6cfb4e3f198a1eb9d32c4581d01819bd39d25153</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMo7roK_gLp0UvXfLbNcVlcV1hRUMFbSJNUI2lTkxbpv7frrnryNDDzzMPMC8A5gnMEIb6q2zmimJEDMMU0JynFkB-CKYScpphCNgEnMb5DCDPC4DGYEEwZZqyYgpeVkdGW1tluSHyVtMF3vklWm8XjOrEhSG1lZ8dOH23zmsgkDo16C14NyvkujIPKh3HLKGcbq6RLYtdra-IpOKqki-ZsX2fgeXX9tFynm_ub2-VikypSbC81JdaFQhWhCpcMSUKzQvNcZaoqqSEV4oVEpuSaYEVZgTREBeKlJlxjhhiZgcudd7z8ozexE7WNyjgnG-P7KMb3M04pz_M_VAUfYzCVaIOtZRgEgmKbo6hb8Z3jiF7srX1ZG_0L_gQ3AukO-LTODP-KxN3DTvgFRXp71Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406944977</pqid></control><display><type>article</type><title>Feasibility of proton FLASH irradiation using a synchrocyclotron for preclinical studies</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>Wiley Blackwell Journals</source><creator>Darafsheh, Arash ; Hao, Yao ; Zwart, Townsend ; Wagner, Miles ; Catanzano, Daniel ; Williamson, Jeffrey F. ; Knutson, Nels ; Sun, Baozhou ; Mutic, Sasa ; Zhao, Tianyu</creator><creatorcontrib>Darafsheh, Arash ; Hao, Yao ; Zwart, Townsend ; Wagner, Miles ; Catanzano, Daniel ; Williamson, Jeffrey F. ; Knutson, Nels ; Sun, Baozhou ; Mutic, Sasa ; Zhao, Tianyu</creatorcontrib><description>Purpose It has been recently shown that radiotherapy at ultrahigh dose rates (&gt;40 Gy/s, FLASH) has a potential advantage in sparing healthy organs compared to that at conventional dose rates. The purpose of this work is to show the feasibility of proton FLASH irradiation using a gantry‐mounted synchrocyclotron as a first step toward implementing an experimental setup for preclinical studies. Methods A clinical Mevion HYPERSCAN® synchrocyclotron was modified to deliver ultrahigh dose rates. Pulse widths of protons with 230 MeV energy were manipulated from 1 to 20 μs to deliver in conventional and ultrahigh dose rate. A boron carbide absorber was placed in the beam for range modulation. A Faraday cup was used to determine the number of protons per pulse at various dose rates. Dose rate was determined by the dose measured with a plane‐parallel ionization chamber with respect to the actual delivery time. The integral depth dose (IDD) was measured with a Bragg ionization chamber. Monte Carlo simulation was performed in TOPAS as the secondary check for the measurements. Results Maximum protons charge per pulse, measured with the Faraday cup, was 54.6 pC at 20 μs pulse width. The measured IDD agreed well with the Monte Carlo simulation. The average dose rate measured using the ionization chamber showed 101 Gy/s at the entrance and 216 Gy/s at the Bragg peak with a full width at half maximum field size of 1.2 cm. Conclusions It is feasible to deliver protons at 100 and 200 Gy/s average dose rate at the plateau and the Bragg peak, respectively, in a small ~1 cm2 field using a gantry‐mounted synchrocyclotron.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1002/mp.14253</identifier><identifier>PMID: 32452558</identifier><language>eng</language><publisher>United States</publisher><subject>Cyclotrons ; Feasibility Studies ; FLASH ; Monte Carlo ; Monte Carlo Method ; Proton Therapy ; Protons ; Radiometry ; Radiotherapy Dosage ; synchrocyclotron ; ultrahigh dose rate</subject><ispartof>Medical physics (Lancaster), 2020-09, Vol.47 (9), p.4348-4355</ispartof><rights>2020 American Association of Physicists in Medicine</rights><rights>2020 American Association of Physicists in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3873-4eb2d8c1f34c2b51a3468d97c6cfb4e3f198a1eb9d32c4581d01819bd39d25153</citedby><cites>FETCH-LOGICAL-c3873-4eb2d8c1f34c2b51a3468d97c6cfb4e3f198a1eb9d32c4581d01819bd39d25153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmp.14253$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmp.14253$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32452558$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Darafsheh, Arash</creatorcontrib><creatorcontrib>Hao, Yao</creatorcontrib><creatorcontrib>Zwart, Townsend</creatorcontrib><creatorcontrib>Wagner, Miles</creatorcontrib><creatorcontrib>Catanzano, Daniel</creatorcontrib><creatorcontrib>Williamson, Jeffrey F.</creatorcontrib><creatorcontrib>Knutson, Nels</creatorcontrib><creatorcontrib>Sun, Baozhou</creatorcontrib><creatorcontrib>Mutic, Sasa</creatorcontrib><creatorcontrib>Zhao, Tianyu</creatorcontrib><title>Feasibility of proton FLASH irradiation using a synchrocyclotron for preclinical studies</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Purpose It has been recently shown that radiotherapy at ultrahigh dose rates (&gt;40 Gy/s, FLASH) has a potential advantage in sparing healthy organs compared to that at conventional dose rates. The purpose of this work is to show the feasibility of proton FLASH irradiation using a gantry‐mounted synchrocyclotron as a first step toward implementing an experimental setup for preclinical studies. Methods A clinical Mevion HYPERSCAN® synchrocyclotron was modified to deliver ultrahigh dose rates. Pulse widths of protons with 230 MeV energy were manipulated from 1 to 20 μs to deliver in conventional and ultrahigh dose rate. A boron carbide absorber was placed in the beam for range modulation. A Faraday cup was used to determine the number of protons per pulse at various dose rates. Dose rate was determined by the dose measured with a plane‐parallel ionization chamber with respect to the actual delivery time. The integral depth dose (IDD) was measured with a Bragg ionization chamber. Monte Carlo simulation was performed in TOPAS as the secondary check for the measurements. Results Maximum protons charge per pulse, measured with the Faraday cup, was 54.6 pC at 20 μs pulse width. The measured IDD agreed well with the Monte Carlo simulation. The average dose rate measured using the ionization chamber showed 101 Gy/s at the entrance and 216 Gy/s at the Bragg peak with a full width at half maximum field size of 1.2 cm. Conclusions It is feasible to deliver protons at 100 and 200 Gy/s average dose rate at the plateau and the Bragg peak, respectively, in a small ~1 cm2 field using a gantry‐mounted synchrocyclotron.</description><subject>Cyclotrons</subject><subject>Feasibility Studies</subject><subject>FLASH</subject><subject>Monte Carlo</subject><subject>Monte Carlo Method</subject><subject>Proton Therapy</subject><subject>Protons</subject><subject>Radiometry</subject><subject>Radiotherapy Dosage</subject><subject>synchrocyclotron</subject><subject>ultrahigh dose rate</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1LxDAQhoMo7roK_gLp0UvXfLbNcVlcV1hRUMFbSJNUI2lTkxbpv7frrnryNDDzzMPMC8A5gnMEIb6q2zmimJEDMMU0JynFkB-CKYScpphCNgEnMb5DCDPC4DGYEEwZZqyYgpeVkdGW1tluSHyVtMF3vklWm8XjOrEhSG1lZ8dOH23zmsgkDo16C14NyvkujIPKh3HLKGcbq6RLYtdra-IpOKqki-ZsX2fgeXX9tFynm_ub2-VikypSbC81JdaFQhWhCpcMSUKzQvNcZaoqqSEV4oVEpuSaYEVZgTREBeKlJlxjhhiZgcudd7z8ozexE7WNyjgnG-P7KMb3M04pz_M_VAUfYzCVaIOtZRgEgmKbo6hb8Z3jiF7srX1ZG_0L_gQ3AukO-LTODP-KxN3DTvgFRXp71Q</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Darafsheh, Arash</creator><creator>Hao, Yao</creator><creator>Zwart, Townsend</creator><creator>Wagner, Miles</creator><creator>Catanzano, Daniel</creator><creator>Williamson, Jeffrey F.</creator><creator>Knutson, Nels</creator><creator>Sun, Baozhou</creator><creator>Mutic, Sasa</creator><creator>Zhao, Tianyu</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202009</creationdate><title>Feasibility of proton FLASH irradiation using a synchrocyclotron for preclinical studies</title><author>Darafsheh, Arash ; Hao, Yao ; Zwart, Townsend ; Wagner, Miles ; Catanzano, Daniel ; Williamson, Jeffrey F. ; Knutson, Nels ; Sun, Baozhou ; Mutic, Sasa ; Zhao, Tianyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3873-4eb2d8c1f34c2b51a3468d97c6cfb4e3f198a1eb9d32c4581d01819bd39d25153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cyclotrons</topic><topic>Feasibility Studies</topic><topic>FLASH</topic><topic>Monte Carlo</topic><topic>Monte Carlo Method</topic><topic>Proton Therapy</topic><topic>Protons</topic><topic>Radiometry</topic><topic>Radiotherapy Dosage</topic><topic>synchrocyclotron</topic><topic>ultrahigh dose rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Darafsheh, Arash</creatorcontrib><creatorcontrib>Hao, Yao</creatorcontrib><creatorcontrib>Zwart, Townsend</creatorcontrib><creatorcontrib>Wagner, Miles</creatorcontrib><creatorcontrib>Catanzano, Daniel</creatorcontrib><creatorcontrib>Williamson, Jeffrey F.</creatorcontrib><creatorcontrib>Knutson, Nels</creatorcontrib><creatorcontrib>Sun, Baozhou</creatorcontrib><creatorcontrib>Mutic, Sasa</creatorcontrib><creatorcontrib>Zhao, Tianyu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Darafsheh, Arash</au><au>Hao, Yao</au><au>Zwart, Townsend</au><au>Wagner, Miles</au><au>Catanzano, Daniel</au><au>Williamson, Jeffrey F.</au><au>Knutson, Nels</au><au>Sun, Baozhou</au><au>Mutic, Sasa</au><au>Zhao, Tianyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feasibility of proton FLASH irradiation using a synchrocyclotron for preclinical studies</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2020-09</date><risdate>2020</risdate><volume>47</volume><issue>9</issue><spage>4348</spage><epage>4355</epage><pages>4348-4355</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><abstract>Purpose It has been recently shown that radiotherapy at ultrahigh dose rates (&gt;40 Gy/s, FLASH) has a potential advantage in sparing healthy organs compared to that at conventional dose rates. The purpose of this work is to show the feasibility of proton FLASH irradiation using a gantry‐mounted synchrocyclotron as a first step toward implementing an experimental setup for preclinical studies. Methods A clinical Mevion HYPERSCAN® synchrocyclotron was modified to deliver ultrahigh dose rates. Pulse widths of protons with 230 MeV energy were manipulated from 1 to 20 μs to deliver in conventional and ultrahigh dose rate. A boron carbide absorber was placed in the beam for range modulation. A Faraday cup was used to determine the number of protons per pulse at various dose rates. Dose rate was determined by the dose measured with a plane‐parallel ionization chamber with respect to the actual delivery time. The integral depth dose (IDD) was measured with a Bragg ionization chamber. Monte Carlo simulation was performed in TOPAS as the secondary check for the measurements. Results Maximum protons charge per pulse, measured with the Faraday cup, was 54.6 pC at 20 μs pulse width. The measured IDD agreed well with the Monte Carlo simulation. The average dose rate measured using the ionization chamber showed 101 Gy/s at the entrance and 216 Gy/s at the Bragg peak with a full width at half maximum field size of 1.2 cm. Conclusions It is feasible to deliver protons at 100 and 200 Gy/s average dose rate at the plateau and the Bragg peak, respectively, in a small ~1 cm2 field using a gantry‐mounted synchrocyclotron.</abstract><cop>United States</cop><pmid>32452558</pmid><doi>10.1002/mp.14253</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2020-09, Vol.47 (9), p.4348-4355
issn 0094-2405
2473-4209
language eng
recordid cdi_proquest_miscellaneous_2406944977
source MEDLINE; Alma/SFX Local Collection; Wiley Blackwell Journals
subjects Cyclotrons
Feasibility Studies
FLASH
Monte Carlo
Monte Carlo Method
Proton Therapy
Protons
Radiometry
Radiotherapy Dosage
synchrocyclotron
ultrahigh dose rate
title Feasibility of proton FLASH irradiation using a synchrocyclotron for preclinical studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A26%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feasibility%20of%20proton%20FLASH%20irradiation%20using%20a%20synchrocyclotron%20for%20preclinical%20studies&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Darafsheh,%20Arash&rft.date=2020-09&rft.volume=47&rft.issue=9&rft.spage=4348&rft.epage=4355&rft.pages=4348-4355&rft.issn=0094-2405&rft.eissn=2473-4209&rft_id=info:doi/10.1002/mp.14253&rft_dat=%3Cproquest_cross%3E2406944977%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406944977&rft_id=info:pmid/32452558&rfr_iscdi=true