Modifications of fatty acid profile through targeted mutation at BnaFAD2 gene with CRISPR/Cas9-mediated gene editing in Brassica napus
Key message Genomic editing with CRISPR/Cas9 system can simultaneously modify multiple copies of the BnaFAD2 gene to develop novel variations in fatty acids profiles in polyploidy rapeseed . Fatty acid composition affects edible and processing quality of vegetable oil and has been one of the primary...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied genetics 2020-08, Vol.133 (8), p.2401-2411 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2411 |
---|---|
container_issue | 8 |
container_start_page | 2401 |
container_title | Theoretical and applied genetics |
container_volume | 133 |
creator | Huang, Huibin Cui, Tingting Zhang, Lili Yang, Qingyong Yang, Yang Xie, Kabin Fan, Chuchuan Zhou, Yongming |
description | Key message
Genomic editing with CRISPR/Cas9 system can simultaneously modify multiple copies of the
BnaFAD2
gene to develop novel variations in fatty acids profiles in polyploidy rapeseed
.
Fatty acid composition affects edible and processing quality of vegetable oil and has been one of the primary targets for genetic modification in oilseed crops including rapeseed (
Brassica napus
). Fatty acid desaturase 2 gene,
FAD2
, is a key player that affects three major fatty acids, namely oleic, linoleic and linolenic acid, in oilseed plants. Previously, we showed that there are four copies of
BnaFAD2
in allotetraploid rapeseed. In this study, we further established spatiotemporal expression pattern of each copy of
BnaFAD2
using published RNA-seq data. Genomic editing technology based on CRISPR/Cas9 system was used to mutate all the copies of
BnaFAD2
to create novel allelic variations in oleic acid and other fatty acid levels. A number of mutants at two targeting sites were identified, and the phenotypic variation in the mutants was systematically evaluated. The oleic acid content in the seed of the mutants increased significantly with the highest exceeding 80% compared with wild type of 66.43%, while linoleic and linolenic acid contents decreased accordingly. Mutations on
BnaFAD2.A5
caused more dramatic changes of fatty acid profile than the mutations on
BnaFAD2.C5
alleles that were identified with gene editing technique for the first time. Moreover, combining different mutated alleles of
BnaFAD2
can even broaden the variation more dramatically. It was found that effects of different mutation types at
BnaFAD2
alleles on oleic levels varied, indicating a possibility to manipulate fatty acid levels by precise mutation at specific region of a gene. |
doi_str_mv | 10.1007/s00122-020-03607-y |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2406573331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A629538575</galeid><sourcerecordid>A629538575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-98eaca1783171f7042d560c4b04b699904b4d2ddb03d0473bd20cc46a11631613</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEokvhD3BAlrjQQ9rxR5zNcbu0sFIRaAtny7GdrKvE2dqOYP8Avxtnt3wsQsiHkTXPO-MZv1n2EsM5BigvAgAmJAcCOVAOZb57lM0woyQnhJHH2QyAQV6UBTnJnoVwBwCkAPo0O6GEsXmFq1n2_cOgbWOVjHZwAQ0NamSMOySV1Wjrh8Z2BsWNH8Z2g6L0rYlGo36MewGSEV06eb14S1BrnEFfbdyg5Xp1-2l9sZShynujrZwk-3S6ROtaZB269DKE1Bc5uR3D8-xJI7tgXjzE0-zL9dXn5fv85uO71XJxkytW8phXcyOVxOWc4hI3JTCiCw6K1cBqXlVVCkwTrWugGlhJa01AKcYlxpxijulp9uZQN412P5oQRW-DMl0nnRnGIAgDXpSU0gl9_Rd6N4zepdclilBe0JL_QbWyM8K6ZoheqqmoWHBSFXSe9p-o839Q6WjTWzU4M635WHB2JEhMNN9iK8cQxOp2fcySA6v8EII3jdh620u_ExjEZBRxMIpIRhF7o4hdEr16mG6s0x_9kvx0RgLoAQgp5Vrjf4__n7I_AOvFxWc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423653761</pqid></control><display><type>article</type><title>Modifications of fatty acid profile through targeted mutation at BnaFAD2 gene with CRISPR/Cas9-mediated gene editing in Brassica napus</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Huang, Huibin ; Cui, Tingting ; Zhang, Lili ; Yang, Qingyong ; Yang, Yang ; Xie, Kabin ; Fan, Chuchuan ; Zhou, Yongming</creator><creatorcontrib>Huang, Huibin ; Cui, Tingting ; Zhang, Lili ; Yang, Qingyong ; Yang, Yang ; Xie, Kabin ; Fan, Chuchuan ; Zhou, Yongming</creatorcontrib><description>Key message
Genomic editing with CRISPR/Cas9 system can simultaneously modify multiple copies of the
BnaFAD2
gene to develop novel variations in fatty acids profiles in polyploidy rapeseed
.
Fatty acid composition affects edible and processing quality of vegetable oil and has been one of the primary targets for genetic modification in oilseed crops including rapeseed (
Brassica napus
). Fatty acid desaturase 2 gene,
FAD2
, is a key player that affects three major fatty acids, namely oleic, linoleic and linolenic acid, in oilseed plants. Previously, we showed that there are four copies of
BnaFAD2
in allotetraploid rapeseed. In this study, we further established spatiotemporal expression pattern of each copy of
BnaFAD2
using published RNA-seq data. Genomic editing technology based on CRISPR/Cas9 system was used to mutate all the copies of
BnaFAD2
to create novel allelic variations in oleic acid and other fatty acid levels. A number of mutants at two targeting sites were identified, and the phenotypic variation in the mutants was systematically evaluated. The oleic acid content in the seed of the mutants increased significantly with the highest exceeding 80% compared with wild type of 66.43%, while linoleic and linolenic acid contents decreased accordingly. Mutations on
BnaFAD2.A5
caused more dramatic changes of fatty acid profile than the mutations on
BnaFAD2.C5
alleles that were identified with gene editing technique for the first time. Moreover, combining different mutated alleles of
BnaFAD2
can even broaden the variation more dramatically. It was found that effects of different mutation types at
BnaFAD2
alleles on oleic levels varied, indicating a possibility to manipulate fatty acid levels by precise mutation at specific region of a gene.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-020-03607-y</identifier><identifier>PMID: 32448919</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Alleles ; alpha-Linolenic Acid - analysis ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Brassica napus ; Brassica napus - genetics ; Brassica napus - metabolism ; Chromatography, Gas ; Chromatography, Liquid ; CRISPR ; CRISPR-Cas Systems ; Desaturase ; Fatty acid composition ; Fatty Acid Desaturases - genetics ; Fatty Acid Desaturases - metabolism ; Fatty acids ; Fatty Acids - metabolism ; Frameshift Mutation ; Gene Editing - methods ; Gene mutations ; Genes, Plant ; Genetic aspects ; Genetically modified organisms ; Genome editing ; Genotype ; Hypocotyl - genetics ; Hypocotyl - metabolism ; Life Sciences ; Linoleic Acid - analysis ; Linolenic acid ; Linolenic acids ; Monounsaturated fatty acids ; Mutants ; Mutation ; Oilseeds ; Oleic acid ; Oleic Acid - analysis ; Original Article ; Phenotypic variations ; Plant Biochemistry ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Plant Leaves - genetics ; Plant Leaves - growth & development ; Plant Leaves - metabolism ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Roots - genetics ; Plant Roots - metabolism ; Plants, Genetically Modified - genetics ; Polyploidy ; Rape plants ; Ribonucleic acid ; RNA ; RNA editing ; RNA-Seq ; Seedlings - genetics ; Seedlings - growth & development ; Seedlings - metabolism ; Seeds - chemistry ; Seeds - genetics ; Seeds - growth & development ; Seeds - metabolism</subject><ispartof>Theoretical and applied genetics, 2020-08, Vol.133 (8), p.2401-2411</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-98eaca1783171f7042d560c4b04b699904b4d2ddb03d0473bd20cc46a11631613</citedby><cites>FETCH-LOGICAL-c476t-98eaca1783171f7042d560c4b04b699904b4d2ddb03d0473bd20cc46a11631613</cites><orcidid>0000-0003-2230-7559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-020-03607-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-020-03607-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32448919$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Huibin</creatorcontrib><creatorcontrib>Cui, Tingting</creatorcontrib><creatorcontrib>Zhang, Lili</creatorcontrib><creatorcontrib>Yang, Qingyong</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Xie, Kabin</creatorcontrib><creatorcontrib>Fan, Chuchuan</creatorcontrib><creatorcontrib>Zhou, Yongming</creatorcontrib><title>Modifications of fatty acid profile through targeted mutation at BnaFAD2 gene with CRISPR/Cas9-mediated gene editing in Brassica napus</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message
Genomic editing with CRISPR/Cas9 system can simultaneously modify multiple copies of the
BnaFAD2
gene to develop novel variations in fatty acids profiles in polyploidy rapeseed
.
Fatty acid composition affects edible and processing quality of vegetable oil and has been one of the primary targets for genetic modification in oilseed crops including rapeseed (
Brassica napus
). Fatty acid desaturase 2 gene,
FAD2
, is a key player that affects three major fatty acids, namely oleic, linoleic and linolenic acid, in oilseed plants. Previously, we showed that there are four copies of
BnaFAD2
in allotetraploid rapeseed. In this study, we further established spatiotemporal expression pattern of each copy of
BnaFAD2
using published RNA-seq data. Genomic editing technology based on CRISPR/Cas9 system was used to mutate all the copies of
BnaFAD2
to create novel allelic variations in oleic acid and other fatty acid levels. A number of mutants at two targeting sites were identified, and the phenotypic variation in the mutants was systematically evaluated. The oleic acid content in the seed of the mutants increased significantly with the highest exceeding 80% compared with wild type of 66.43%, while linoleic and linolenic acid contents decreased accordingly. Mutations on
BnaFAD2.A5
caused more dramatic changes of fatty acid profile than the mutations on
BnaFAD2.C5
alleles that were identified with gene editing technique for the first time. Moreover, combining different mutated alleles of
BnaFAD2
can even broaden the variation more dramatically. It was found that effects of different mutation types at
BnaFAD2
alleles on oleic levels varied, indicating a possibility to manipulate fatty acid levels by precise mutation at specific region of a gene.</description><subject>Agriculture</subject><subject>Alleles</subject><subject>alpha-Linolenic Acid - analysis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Brassica napus</subject><subject>Brassica napus - genetics</subject><subject>Brassica napus - metabolism</subject><subject>Chromatography, Gas</subject><subject>Chromatography, Liquid</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>Desaturase</subject><subject>Fatty acid composition</subject><subject>Fatty Acid Desaturases - genetics</subject><subject>Fatty Acid Desaturases - metabolism</subject><subject>Fatty acids</subject><subject>Fatty Acids - metabolism</subject><subject>Frameshift Mutation</subject><subject>Gene Editing - methods</subject><subject>Gene mutations</subject><subject>Genes, Plant</subject><subject>Genetic aspects</subject><subject>Genetically modified organisms</subject><subject>Genome editing</subject><subject>Genotype</subject><subject>Hypocotyl - genetics</subject><subject>Hypocotyl - metabolism</subject><subject>Life Sciences</subject><subject>Linoleic Acid - analysis</subject><subject>Linolenic acid</subject><subject>Linolenic acids</subject><subject>Monounsaturated fatty acids</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Oilseeds</subject><subject>Oleic acid</subject><subject>Oleic Acid - analysis</subject><subject>Original Article</subject><subject>Phenotypic variations</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - growth & development</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Roots - genetics</subject><subject>Plant Roots - metabolism</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Polyploidy</subject><subject>Rape plants</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA editing</subject><subject>RNA-Seq</subject><subject>Seedlings - genetics</subject><subject>Seedlings - growth & development</subject><subject>Seedlings - metabolism</subject><subject>Seeds - chemistry</subject><subject>Seeds - genetics</subject><subject>Seeds - growth & development</subject><subject>Seeds - metabolism</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kk1v1DAQhiMEokvhD3BAlrjQQ9rxR5zNcbu0sFIRaAtny7GdrKvE2dqOYP8Avxtnt3wsQsiHkTXPO-MZv1n2EsM5BigvAgAmJAcCOVAOZb57lM0woyQnhJHH2QyAQV6UBTnJnoVwBwCkAPo0O6GEsXmFq1n2_cOgbWOVjHZwAQ0NamSMOySV1Wjrh8Z2BsWNH8Z2g6L0rYlGo36MewGSEV06eb14S1BrnEFfbdyg5Xp1-2l9sZShynujrZwk-3S6ROtaZB269DKE1Bc5uR3D8-xJI7tgXjzE0-zL9dXn5fv85uO71XJxkytW8phXcyOVxOWc4hI3JTCiCw6K1cBqXlVVCkwTrWugGlhJa01AKcYlxpxijulp9uZQN412P5oQRW-DMl0nnRnGIAgDXpSU0gl9_Rd6N4zepdclilBe0JL_QbWyM8K6ZoheqqmoWHBSFXSe9p-o839Q6WjTWzU4M635WHB2JEhMNN9iK8cQxOp2fcySA6v8EII3jdh620u_ExjEZBRxMIpIRhF7o4hdEr16mG6s0x_9kvx0RgLoAQgp5Vrjf4__n7I_AOvFxWc</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Huang, Huibin</creator><creator>Cui, Tingting</creator><creator>Zhang, Lili</creator><creator>Yang, Qingyong</creator><creator>Yang, Yang</creator><creator>Xie, Kabin</creator><creator>Fan, Chuchuan</creator><creator>Zhou, Yongming</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2230-7559</orcidid></search><sort><creationdate>20200801</creationdate><title>Modifications of fatty acid profile through targeted mutation at BnaFAD2 gene with CRISPR/Cas9-mediated gene editing in Brassica napus</title><author>Huang, Huibin ; Cui, Tingting ; Zhang, Lili ; Yang, Qingyong ; Yang, Yang ; Xie, Kabin ; Fan, Chuchuan ; Zhou, Yongming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-98eaca1783171f7042d560c4b04b699904b4d2ddb03d0473bd20cc46a11631613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agriculture</topic><topic>Alleles</topic><topic>alpha-Linolenic Acid - analysis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Brassica napus</topic><topic>Brassica napus - genetics</topic><topic>Brassica napus - metabolism</topic><topic>Chromatography, Gas</topic><topic>Chromatography, Liquid</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>Desaturase</topic><topic>Fatty acid composition</topic><topic>Fatty Acid Desaturases - genetics</topic><topic>Fatty Acid Desaturases - metabolism</topic><topic>Fatty acids</topic><topic>Fatty Acids - metabolism</topic><topic>Frameshift Mutation</topic><topic>Gene Editing - methods</topic><topic>Gene mutations</topic><topic>Genes, Plant</topic><topic>Genetic aspects</topic><topic>Genetically modified organisms</topic><topic>Genome editing</topic><topic>Genotype</topic><topic>Hypocotyl - genetics</topic><topic>Hypocotyl - metabolism</topic><topic>Life Sciences</topic><topic>Linoleic Acid - analysis</topic><topic>Linolenic acid</topic><topic>Linolenic acids</topic><topic>Monounsaturated fatty acids</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Oilseeds</topic><topic>Oleic acid</topic><topic>Oleic Acid - analysis</topic><topic>Original Article</topic><topic>Phenotypic variations</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - growth & development</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Roots - genetics</topic><topic>Plant Roots - metabolism</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Polyploidy</topic><topic>Rape plants</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA editing</topic><topic>RNA-Seq</topic><topic>Seedlings - genetics</topic><topic>Seedlings - growth & development</topic><topic>Seedlings - metabolism</topic><topic>Seeds - chemistry</topic><topic>Seeds - genetics</topic><topic>Seeds - growth & development</topic><topic>Seeds - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Huibin</creatorcontrib><creatorcontrib>Cui, Tingting</creatorcontrib><creatorcontrib>Zhang, Lili</creatorcontrib><creatorcontrib>Yang, Qingyong</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Xie, Kabin</creatorcontrib><creatorcontrib>Fan, Chuchuan</creatorcontrib><creatorcontrib>Zhou, Yongming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Huibin</au><au>Cui, Tingting</au><au>Zhang, Lili</au><au>Yang, Qingyong</au><au>Yang, Yang</au><au>Xie, Kabin</au><au>Fan, Chuchuan</au><au>Zhou, Yongming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modifications of fatty acid profile through targeted mutation at BnaFAD2 gene with CRISPR/Cas9-mediated gene editing in Brassica napus</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>133</volume><issue>8</issue><spage>2401</spage><epage>2411</epage><pages>2401-2411</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Key message
Genomic editing with CRISPR/Cas9 system can simultaneously modify multiple copies of the
BnaFAD2
gene to develop novel variations in fatty acids profiles in polyploidy rapeseed
.
Fatty acid composition affects edible and processing quality of vegetable oil and has been one of the primary targets for genetic modification in oilseed crops including rapeseed (
Brassica napus
). Fatty acid desaturase 2 gene,
FAD2
, is a key player that affects three major fatty acids, namely oleic, linoleic and linolenic acid, in oilseed plants. Previously, we showed that there are four copies of
BnaFAD2
in allotetraploid rapeseed. In this study, we further established spatiotemporal expression pattern of each copy of
BnaFAD2
using published RNA-seq data. Genomic editing technology based on CRISPR/Cas9 system was used to mutate all the copies of
BnaFAD2
to create novel allelic variations in oleic acid and other fatty acid levels. A number of mutants at two targeting sites were identified, and the phenotypic variation in the mutants was systematically evaluated. The oleic acid content in the seed of the mutants increased significantly with the highest exceeding 80% compared with wild type of 66.43%, while linoleic and linolenic acid contents decreased accordingly. Mutations on
BnaFAD2.A5
caused more dramatic changes of fatty acid profile than the mutations on
BnaFAD2.C5
alleles that were identified with gene editing technique for the first time. Moreover, combining different mutated alleles of
BnaFAD2
can even broaden the variation more dramatically. It was found that effects of different mutation types at
BnaFAD2
alleles on oleic levels varied, indicating a possibility to manipulate fatty acid levels by precise mutation at specific region of a gene.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32448919</pmid><doi>10.1007/s00122-020-03607-y</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2230-7559</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5752 |
ispartof | Theoretical and applied genetics, 2020-08, Vol.133 (8), p.2401-2411 |
issn | 0040-5752 1432-2242 |
language | eng |
recordid | cdi_proquest_miscellaneous_2406573331 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Agriculture Alleles alpha-Linolenic Acid - analysis Biochemistry Biomedical and Life Sciences Biotechnology Brassica napus Brassica napus - genetics Brassica napus - metabolism Chromatography, Gas Chromatography, Liquid CRISPR CRISPR-Cas Systems Desaturase Fatty acid composition Fatty Acid Desaturases - genetics Fatty Acid Desaturases - metabolism Fatty acids Fatty Acids - metabolism Frameshift Mutation Gene Editing - methods Gene mutations Genes, Plant Genetic aspects Genetically modified organisms Genome editing Genotype Hypocotyl - genetics Hypocotyl - metabolism Life Sciences Linoleic Acid - analysis Linolenic acid Linolenic acids Monounsaturated fatty acids Mutants Mutation Oilseeds Oleic acid Oleic Acid - analysis Original Article Phenotypic variations Plant Biochemistry Plant Breeding/Biotechnology Plant Genetics and Genomics Plant Leaves - genetics Plant Leaves - growth & development Plant Leaves - metabolism Plant Proteins - genetics Plant Proteins - metabolism Plant Roots - genetics Plant Roots - metabolism Plants, Genetically Modified - genetics Polyploidy Rape plants Ribonucleic acid RNA RNA editing RNA-Seq Seedlings - genetics Seedlings - growth & development Seedlings - metabolism Seeds - chemistry Seeds - genetics Seeds - growth & development Seeds - metabolism |
title | Modifications of fatty acid profile through targeted mutation at BnaFAD2 gene with CRISPR/Cas9-mediated gene editing in Brassica napus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modifications%20of%20fatty%20acid%20profile%20through%20targeted%20mutation%20at%20BnaFAD2%20gene%20with%20CRISPR/Cas9-mediated%20gene%20editing%20in%20Brassica%20napus&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Huang,%20Huibin&rft.date=2020-08-01&rft.volume=133&rft.issue=8&rft.spage=2401&rft.epage=2411&rft.pages=2401-2411&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-020-03607-y&rft_dat=%3Cgale_proqu%3EA629538575%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2423653761&rft_id=info:pmid/32448919&rft_galeid=A629538575&rfr_iscdi=true |