Modifications of fatty acid profile through targeted mutation at BnaFAD2 gene with CRISPR/Cas9-mediated gene editing in Brassica napus

Key message Genomic editing with CRISPR/Cas9 system can simultaneously modify multiple copies of the BnaFAD2 gene to develop novel variations in fatty acids profiles in polyploidy rapeseed . Fatty acid composition affects edible and processing quality of vegetable oil and has been one of the primary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied genetics 2020-08, Vol.133 (8), p.2401-2411
Hauptverfasser: Huang, Huibin, Cui, Tingting, Zhang, Lili, Yang, Qingyong, Yang, Yang, Xie, Kabin, Fan, Chuchuan, Zhou, Yongming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2411
container_issue 8
container_start_page 2401
container_title Theoretical and applied genetics
container_volume 133
creator Huang, Huibin
Cui, Tingting
Zhang, Lili
Yang, Qingyong
Yang, Yang
Xie, Kabin
Fan, Chuchuan
Zhou, Yongming
description Key message Genomic editing with CRISPR/Cas9 system can simultaneously modify multiple copies of the BnaFAD2 gene to develop novel variations in fatty acids profiles in polyploidy rapeseed . Fatty acid composition affects edible and processing quality of vegetable oil and has been one of the primary targets for genetic modification in oilseed crops including rapeseed ( Brassica napus ). Fatty acid desaturase 2 gene, FAD2 , is a key player that affects three major fatty acids, namely oleic, linoleic and linolenic acid, in oilseed plants. Previously, we showed that there are four copies of BnaFAD2 in allotetraploid rapeseed. In this study, we further established spatiotemporal expression pattern of each copy of BnaFAD2 using published RNA-seq data. Genomic editing technology based on CRISPR/Cas9 system was used to mutate all the copies of BnaFAD2 to create novel allelic variations in oleic acid and other fatty acid levels. A number of mutants at two targeting sites were identified, and the phenotypic variation in the mutants was systematically evaluated. The oleic acid content in the seed of the mutants increased significantly with the highest exceeding 80% compared with wild type of 66.43%, while linoleic and linolenic acid contents decreased accordingly. Mutations on BnaFAD2.A5 caused more dramatic changes of fatty acid profile than the mutations on BnaFAD2.C5 alleles that were identified with gene editing technique for the first time. Moreover, combining different mutated alleles of BnaFAD2 can even broaden the variation more dramatically. It was found that effects of different mutation types at BnaFAD2 alleles on oleic levels varied, indicating a possibility to manipulate fatty acid levels by precise mutation at specific region of a gene.
doi_str_mv 10.1007/s00122-020-03607-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2406573331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A629538575</galeid><sourcerecordid>A629538575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-98eaca1783171f7042d560c4b04b699904b4d2ddb03d0473bd20cc46a11631613</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEokvhD3BAlrjQQ9rxR5zNcbu0sFIRaAtny7GdrKvE2dqOYP8Avxtnt3wsQsiHkTXPO-MZv1n2EsM5BigvAgAmJAcCOVAOZb57lM0woyQnhJHH2QyAQV6UBTnJnoVwBwCkAPo0O6GEsXmFq1n2_cOgbWOVjHZwAQ0NamSMOySV1Wjrh8Z2BsWNH8Z2g6L0rYlGo36MewGSEV06eb14S1BrnEFfbdyg5Xp1-2l9sZShynujrZwk-3S6ROtaZB269DKE1Bc5uR3D8-xJI7tgXjzE0-zL9dXn5fv85uO71XJxkytW8phXcyOVxOWc4hI3JTCiCw6K1cBqXlVVCkwTrWugGlhJa01AKcYlxpxijulp9uZQN412P5oQRW-DMl0nnRnGIAgDXpSU0gl9_Rd6N4zepdclilBe0JL_QbWyM8K6ZoheqqmoWHBSFXSe9p-o839Q6WjTWzU4M635WHB2JEhMNN9iK8cQxOp2fcySA6v8EII3jdh620u_ExjEZBRxMIpIRhF7o4hdEr16mG6s0x_9kvx0RgLoAQgp5Vrjf4__n7I_AOvFxWc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423653761</pqid></control><display><type>article</type><title>Modifications of fatty acid profile through targeted mutation at BnaFAD2 gene with CRISPR/Cas9-mediated gene editing in Brassica napus</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Huang, Huibin ; Cui, Tingting ; Zhang, Lili ; Yang, Qingyong ; Yang, Yang ; Xie, Kabin ; Fan, Chuchuan ; Zhou, Yongming</creator><creatorcontrib>Huang, Huibin ; Cui, Tingting ; Zhang, Lili ; Yang, Qingyong ; Yang, Yang ; Xie, Kabin ; Fan, Chuchuan ; Zhou, Yongming</creatorcontrib><description>Key message Genomic editing with CRISPR/Cas9 system can simultaneously modify multiple copies of the BnaFAD2 gene to develop novel variations in fatty acids profiles in polyploidy rapeseed . Fatty acid composition affects edible and processing quality of vegetable oil and has been one of the primary targets for genetic modification in oilseed crops including rapeseed ( Brassica napus ). Fatty acid desaturase 2 gene, FAD2 , is a key player that affects three major fatty acids, namely oleic, linoleic and linolenic acid, in oilseed plants. Previously, we showed that there are four copies of BnaFAD2 in allotetraploid rapeseed. In this study, we further established spatiotemporal expression pattern of each copy of BnaFAD2 using published RNA-seq data. Genomic editing technology based on CRISPR/Cas9 system was used to mutate all the copies of BnaFAD2 to create novel allelic variations in oleic acid and other fatty acid levels. A number of mutants at two targeting sites were identified, and the phenotypic variation in the mutants was systematically evaluated. The oleic acid content in the seed of the mutants increased significantly with the highest exceeding 80% compared with wild type of 66.43%, while linoleic and linolenic acid contents decreased accordingly. Mutations on BnaFAD2.A5 caused more dramatic changes of fatty acid profile than the mutations on BnaFAD2.C5 alleles that were identified with gene editing technique for the first time. Moreover, combining different mutated alleles of BnaFAD2 can even broaden the variation more dramatically. It was found that effects of different mutation types at BnaFAD2 alleles on oleic levels varied, indicating a possibility to manipulate fatty acid levels by precise mutation at specific region of a gene.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-020-03607-y</identifier><identifier>PMID: 32448919</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Alleles ; alpha-Linolenic Acid - analysis ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Brassica napus ; Brassica napus - genetics ; Brassica napus - metabolism ; Chromatography, Gas ; Chromatography, Liquid ; CRISPR ; CRISPR-Cas Systems ; Desaturase ; Fatty acid composition ; Fatty Acid Desaturases - genetics ; Fatty Acid Desaturases - metabolism ; Fatty acids ; Fatty Acids - metabolism ; Frameshift Mutation ; Gene Editing - methods ; Gene mutations ; Genes, Plant ; Genetic aspects ; Genetically modified organisms ; Genome editing ; Genotype ; Hypocotyl - genetics ; Hypocotyl - metabolism ; Life Sciences ; Linoleic Acid - analysis ; Linolenic acid ; Linolenic acids ; Monounsaturated fatty acids ; Mutants ; Mutation ; Oilseeds ; Oleic acid ; Oleic Acid - analysis ; Original Article ; Phenotypic variations ; Plant Biochemistry ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Plant Leaves - genetics ; Plant Leaves - growth &amp; development ; Plant Leaves - metabolism ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Roots - genetics ; Plant Roots - metabolism ; Plants, Genetically Modified - genetics ; Polyploidy ; Rape plants ; Ribonucleic acid ; RNA ; RNA editing ; RNA-Seq ; Seedlings - genetics ; Seedlings - growth &amp; development ; Seedlings - metabolism ; Seeds - chemistry ; Seeds - genetics ; Seeds - growth &amp; development ; Seeds - metabolism</subject><ispartof>Theoretical and applied genetics, 2020-08, Vol.133 (8), p.2401-2411</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-98eaca1783171f7042d560c4b04b699904b4d2ddb03d0473bd20cc46a11631613</citedby><cites>FETCH-LOGICAL-c476t-98eaca1783171f7042d560c4b04b699904b4d2ddb03d0473bd20cc46a11631613</cites><orcidid>0000-0003-2230-7559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-020-03607-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-020-03607-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32448919$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Huibin</creatorcontrib><creatorcontrib>Cui, Tingting</creatorcontrib><creatorcontrib>Zhang, Lili</creatorcontrib><creatorcontrib>Yang, Qingyong</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Xie, Kabin</creatorcontrib><creatorcontrib>Fan, Chuchuan</creatorcontrib><creatorcontrib>Zhou, Yongming</creatorcontrib><title>Modifications of fatty acid profile through targeted mutation at BnaFAD2 gene with CRISPR/Cas9-mediated gene editing in Brassica napus</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message Genomic editing with CRISPR/Cas9 system can simultaneously modify multiple copies of the BnaFAD2 gene to develop novel variations in fatty acids profiles in polyploidy rapeseed . Fatty acid composition affects edible and processing quality of vegetable oil and has been one of the primary targets for genetic modification in oilseed crops including rapeseed ( Brassica napus ). Fatty acid desaturase 2 gene, FAD2 , is a key player that affects three major fatty acids, namely oleic, linoleic and linolenic acid, in oilseed plants. Previously, we showed that there are four copies of BnaFAD2 in allotetraploid rapeseed. In this study, we further established spatiotemporal expression pattern of each copy of BnaFAD2 using published RNA-seq data. Genomic editing technology based on CRISPR/Cas9 system was used to mutate all the copies of BnaFAD2 to create novel allelic variations in oleic acid and other fatty acid levels. A number of mutants at two targeting sites were identified, and the phenotypic variation in the mutants was systematically evaluated. The oleic acid content in the seed of the mutants increased significantly with the highest exceeding 80% compared with wild type of 66.43%, while linoleic and linolenic acid contents decreased accordingly. Mutations on BnaFAD2.A5 caused more dramatic changes of fatty acid profile than the mutations on BnaFAD2.C5 alleles that were identified with gene editing technique for the first time. Moreover, combining different mutated alleles of BnaFAD2 can even broaden the variation more dramatically. It was found that effects of different mutation types at BnaFAD2 alleles on oleic levels varied, indicating a possibility to manipulate fatty acid levels by precise mutation at specific region of a gene.</description><subject>Agriculture</subject><subject>Alleles</subject><subject>alpha-Linolenic Acid - analysis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Brassica napus</subject><subject>Brassica napus - genetics</subject><subject>Brassica napus - metabolism</subject><subject>Chromatography, Gas</subject><subject>Chromatography, Liquid</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>Desaturase</subject><subject>Fatty acid composition</subject><subject>Fatty Acid Desaturases - genetics</subject><subject>Fatty Acid Desaturases - metabolism</subject><subject>Fatty acids</subject><subject>Fatty Acids - metabolism</subject><subject>Frameshift Mutation</subject><subject>Gene Editing - methods</subject><subject>Gene mutations</subject><subject>Genes, Plant</subject><subject>Genetic aspects</subject><subject>Genetically modified organisms</subject><subject>Genome editing</subject><subject>Genotype</subject><subject>Hypocotyl - genetics</subject><subject>Hypocotyl - metabolism</subject><subject>Life Sciences</subject><subject>Linoleic Acid - analysis</subject><subject>Linolenic acid</subject><subject>Linolenic acids</subject><subject>Monounsaturated fatty acids</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Oilseeds</subject><subject>Oleic acid</subject><subject>Oleic Acid - analysis</subject><subject>Original Article</subject><subject>Phenotypic variations</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - growth &amp; development</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Roots - genetics</subject><subject>Plant Roots - metabolism</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Polyploidy</subject><subject>Rape plants</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA editing</subject><subject>RNA-Seq</subject><subject>Seedlings - genetics</subject><subject>Seedlings - growth &amp; development</subject><subject>Seedlings - metabolism</subject><subject>Seeds - chemistry</subject><subject>Seeds - genetics</subject><subject>Seeds - growth &amp; development</subject><subject>Seeds - metabolism</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kk1v1DAQhiMEokvhD3BAlrjQQ9rxR5zNcbu0sFIRaAtny7GdrKvE2dqOYP8Avxtnt3wsQsiHkTXPO-MZv1n2EsM5BigvAgAmJAcCOVAOZb57lM0woyQnhJHH2QyAQV6UBTnJnoVwBwCkAPo0O6GEsXmFq1n2_cOgbWOVjHZwAQ0NamSMOySV1Wjrh8Z2BsWNH8Z2g6L0rYlGo36MewGSEV06eb14S1BrnEFfbdyg5Xp1-2l9sZShynujrZwk-3S6ROtaZB269DKE1Bc5uR3D8-xJI7tgXjzE0-zL9dXn5fv85uO71XJxkytW8phXcyOVxOWc4hI3JTCiCw6K1cBqXlVVCkwTrWugGlhJa01AKcYlxpxijulp9uZQN412P5oQRW-DMl0nnRnGIAgDXpSU0gl9_Rd6N4zepdclilBe0JL_QbWyM8K6ZoheqqmoWHBSFXSe9p-o839Q6WjTWzU4M635WHB2JEhMNN9iK8cQxOp2fcySA6v8EII3jdh620u_ExjEZBRxMIpIRhF7o4hdEr16mG6s0x_9kvx0RgLoAQgp5Vrjf4__n7I_AOvFxWc</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Huang, Huibin</creator><creator>Cui, Tingting</creator><creator>Zhang, Lili</creator><creator>Yang, Qingyong</creator><creator>Yang, Yang</creator><creator>Xie, Kabin</creator><creator>Fan, Chuchuan</creator><creator>Zhou, Yongming</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2230-7559</orcidid></search><sort><creationdate>20200801</creationdate><title>Modifications of fatty acid profile through targeted mutation at BnaFAD2 gene with CRISPR/Cas9-mediated gene editing in Brassica napus</title><author>Huang, Huibin ; Cui, Tingting ; Zhang, Lili ; Yang, Qingyong ; Yang, Yang ; Xie, Kabin ; Fan, Chuchuan ; Zhou, Yongming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-98eaca1783171f7042d560c4b04b699904b4d2ddb03d0473bd20cc46a11631613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agriculture</topic><topic>Alleles</topic><topic>alpha-Linolenic Acid - analysis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Brassica napus</topic><topic>Brassica napus - genetics</topic><topic>Brassica napus - metabolism</topic><topic>Chromatography, Gas</topic><topic>Chromatography, Liquid</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>Desaturase</topic><topic>Fatty acid composition</topic><topic>Fatty Acid Desaturases - genetics</topic><topic>Fatty Acid Desaturases - metabolism</topic><topic>Fatty acids</topic><topic>Fatty Acids - metabolism</topic><topic>Frameshift Mutation</topic><topic>Gene Editing - methods</topic><topic>Gene mutations</topic><topic>Genes, Plant</topic><topic>Genetic aspects</topic><topic>Genetically modified organisms</topic><topic>Genome editing</topic><topic>Genotype</topic><topic>Hypocotyl - genetics</topic><topic>Hypocotyl - metabolism</topic><topic>Life Sciences</topic><topic>Linoleic Acid - analysis</topic><topic>Linolenic acid</topic><topic>Linolenic acids</topic><topic>Monounsaturated fatty acids</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Oilseeds</topic><topic>Oleic acid</topic><topic>Oleic Acid - analysis</topic><topic>Original Article</topic><topic>Phenotypic variations</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - growth &amp; development</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Roots - genetics</topic><topic>Plant Roots - metabolism</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Polyploidy</topic><topic>Rape plants</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA editing</topic><topic>RNA-Seq</topic><topic>Seedlings - genetics</topic><topic>Seedlings - growth &amp; development</topic><topic>Seedlings - metabolism</topic><topic>Seeds - chemistry</topic><topic>Seeds - genetics</topic><topic>Seeds - growth &amp; development</topic><topic>Seeds - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Huibin</creatorcontrib><creatorcontrib>Cui, Tingting</creatorcontrib><creatorcontrib>Zhang, Lili</creatorcontrib><creatorcontrib>Yang, Qingyong</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Xie, Kabin</creatorcontrib><creatorcontrib>Fan, Chuchuan</creatorcontrib><creatorcontrib>Zhou, Yongming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Huibin</au><au>Cui, Tingting</au><au>Zhang, Lili</au><au>Yang, Qingyong</au><au>Yang, Yang</au><au>Xie, Kabin</au><au>Fan, Chuchuan</au><au>Zhou, Yongming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modifications of fatty acid profile through targeted mutation at BnaFAD2 gene with CRISPR/Cas9-mediated gene editing in Brassica napus</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>133</volume><issue>8</issue><spage>2401</spage><epage>2411</epage><pages>2401-2411</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Key message Genomic editing with CRISPR/Cas9 system can simultaneously modify multiple copies of the BnaFAD2 gene to develop novel variations in fatty acids profiles in polyploidy rapeseed . Fatty acid composition affects edible and processing quality of vegetable oil and has been one of the primary targets for genetic modification in oilseed crops including rapeseed ( Brassica napus ). Fatty acid desaturase 2 gene, FAD2 , is a key player that affects three major fatty acids, namely oleic, linoleic and linolenic acid, in oilseed plants. Previously, we showed that there are four copies of BnaFAD2 in allotetraploid rapeseed. In this study, we further established spatiotemporal expression pattern of each copy of BnaFAD2 using published RNA-seq data. Genomic editing technology based on CRISPR/Cas9 system was used to mutate all the copies of BnaFAD2 to create novel allelic variations in oleic acid and other fatty acid levels. A number of mutants at two targeting sites were identified, and the phenotypic variation in the mutants was systematically evaluated. The oleic acid content in the seed of the mutants increased significantly with the highest exceeding 80% compared with wild type of 66.43%, while linoleic and linolenic acid contents decreased accordingly. Mutations on BnaFAD2.A5 caused more dramatic changes of fatty acid profile than the mutations on BnaFAD2.C5 alleles that were identified with gene editing technique for the first time. Moreover, combining different mutated alleles of BnaFAD2 can even broaden the variation more dramatically. It was found that effects of different mutation types at BnaFAD2 alleles on oleic levels varied, indicating a possibility to manipulate fatty acid levels by precise mutation at specific region of a gene.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32448919</pmid><doi>10.1007/s00122-020-03607-y</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2230-7559</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0040-5752
ispartof Theoretical and applied genetics, 2020-08, Vol.133 (8), p.2401-2411
issn 0040-5752
1432-2242
language eng
recordid cdi_proquest_miscellaneous_2406573331
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Agriculture
Alleles
alpha-Linolenic Acid - analysis
Biochemistry
Biomedical and Life Sciences
Biotechnology
Brassica napus
Brassica napus - genetics
Brassica napus - metabolism
Chromatography, Gas
Chromatography, Liquid
CRISPR
CRISPR-Cas Systems
Desaturase
Fatty acid composition
Fatty Acid Desaturases - genetics
Fatty Acid Desaturases - metabolism
Fatty acids
Fatty Acids - metabolism
Frameshift Mutation
Gene Editing - methods
Gene mutations
Genes, Plant
Genetic aspects
Genetically modified organisms
Genome editing
Genotype
Hypocotyl - genetics
Hypocotyl - metabolism
Life Sciences
Linoleic Acid - analysis
Linolenic acid
Linolenic acids
Monounsaturated fatty acids
Mutants
Mutation
Oilseeds
Oleic acid
Oleic Acid - analysis
Original Article
Phenotypic variations
Plant Biochemistry
Plant Breeding/Biotechnology
Plant Genetics and Genomics
Plant Leaves - genetics
Plant Leaves - growth & development
Plant Leaves - metabolism
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Roots - genetics
Plant Roots - metabolism
Plants, Genetically Modified - genetics
Polyploidy
Rape plants
Ribonucleic acid
RNA
RNA editing
RNA-Seq
Seedlings - genetics
Seedlings - growth & development
Seedlings - metabolism
Seeds - chemistry
Seeds - genetics
Seeds - growth & development
Seeds - metabolism
title Modifications of fatty acid profile through targeted mutation at BnaFAD2 gene with CRISPR/Cas9-mediated gene editing in Brassica napus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modifications%20of%20fatty%20acid%20profile%20through%20targeted%20mutation%20at%20BnaFAD2%20gene%20with%20CRISPR/Cas9-mediated%20gene%20editing%20in%20Brassica%20napus&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Huang,%20Huibin&rft.date=2020-08-01&rft.volume=133&rft.issue=8&rft.spage=2401&rft.epage=2411&rft.pages=2401-2411&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-020-03607-y&rft_dat=%3Cgale_proqu%3EA629538575%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2423653761&rft_id=info:pmid/32448919&rft_galeid=A629538575&rfr_iscdi=true