Cell surface IL‐1α trafficking is specifically inhibited by interferon‐γ, and associates with the membrane via IL‐1R2 and GPI anchors
IL‐1 is a powerful cytokine that drives inflammation and modulates adaptive immunity. Both IL‐1α and IL‐1β are translated as proforms that require cleavage for full cytokine activity and release, while IL‐1α is reported to occur as an alternative plasma membrane‐associated form on many cell types. H...
Gespeichert in:
Veröffentlicht in: | European journal of immunology 2020-11, Vol.50 (11), p.1663-1675 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1675 |
---|---|
container_issue | 11 |
container_start_page | 1663 |
container_title | European journal of immunology |
container_volume | 50 |
creator | Chan, Julie N.E. Humphry, Melanie Kitt, Lauren Krzyzanska, Dominika Filbey, Kara J. Bennett, Martin R. Clarke, Murray C.H. |
description | IL‐1 is a powerful cytokine that drives inflammation and modulates adaptive immunity. Both IL‐1α and IL‐1β are translated as proforms that require cleavage for full cytokine activity and release, while IL‐1α is reported to occur as an alternative plasma membrane‐associated form on many cell types. However, the existence of cell surface IL‐1α (csIL‐1α) is contested, how IL‐1α tethers to the membrane is unknown, and signaling pathways controlling trafficking are not specified. Using a robust and fully validated system, we show that macrophages present bona fide csIL‐1α after ligation of TLRs. Pro‐IL‐1α tethers to the plasma membrane in part through IL‐1R2 or via association with a glycosylphosphatidylinositol‐anchored protein, and can be cleaved, activated, and released by proteases. csIL‐1α requires de novo protein synthesis and its trafficking to the plasma membrane is exquisitely sensitive to inhibition by IFN‐γ, independent of expression level. We also reveal how prior csIL‐1α detection could occur through inadvertent cell permeabilisation, and that senescent cells do not drive the senescent‐associated secretory phenotype via csIL‐1α, but rather via soluble IL‐1α. We believe these data are important for determining the local or systemic context in which IL‐1α can contribute to disease and/or physiological processes.
TLR ligation induces expression of IL‐1α on the cell surface of macrophages. IL‐1α tethers to the cell surface via IL‐1R2 and a GPI‐anchored protein. IFN‐γ signaling specifically inhibits the trafficking of IL‐1α to the cell surface. |
doi_str_mv | 10.1002/eji.201948521 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2406570050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2406570050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4037-d3ba0fdf95d3e6351e890b89de9855f65de75d25a79310726c676c41b5880e4f3</originalsourceid><addsrcrecordid>eNp9kc2KFDEUhYMoTju6dCsBNy6s8SaVVJKlNOPY0qCIrotU6sZOWz9tUjVD73wBwVcR32MewicxY7ezcOHqcOG7517OIeQxgzMGwF_gNpxxYEZoydkdsmBZCsEEu0sWAEwU3Gg4IQ9S2gKAqaS5T05KLoRSSizItyV2HU1z9NYhXa1_ff3Orn_QKVrvg_schk80JJp26EKebdftaRg2oQkTtrS5GSaMHuM45M3rn8-pHVpqUxpdsBMmehWmDZ02SHvsm2gHpJfBHu-853_oi3errG4zxvSQ3PO2S_joqKfk46vzD8vXxfrtxWr5cl04AaUq2rKx4FtvZFtiVUqG2kCjTYtGS-kr2aKSLZdWmZKB4pWrVOUEa6TWgMKXp-TZwXcXxy8zpqnuQ3I5ifzgOKeaC6ikApCQ0af_oNtxjkP-LlNSaZ2jlJkqDpSLY0oRfb2LobdxXzOob3qqc0_1bU-Zf3J0nZse21v6bzEZ4AfgKnS4_79bff5mJXSpyt-Hi6B3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457882445</pqid></control><display><type>article</type><title>Cell surface IL‐1α trafficking is specifically inhibited by interferon‐γ, and associates with the membrane via IL‐1R2 and GPI anchors</title><source>MEDLINE</source><source>Wiley Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><creator>Chan, Julie N.E. ; Humphry, Melanie ; Kitt, Lauren ; Krzyzanska, Dominika ; Filbey, Kara J. ; Bennett, Martin R. ; Clarke, Murray C.H.</creator><creatorcontrib>Chan, Julie N.E. ; Humphry, Melanie ; Kitt, Lauren ; Krzyzanska, Dominika ; Filbey, Kara J. ; Bennett, Martin R. ; Clarke, Murray C.H.</creatorcontrib><description>IL‐1 is a powerful cytokine that drives inflammation and modulates adaptive immunity. Both IL‐1α and IL‐1β are translated as proforms that require cleavage for full cytokine activity and release, while IL‐1α is reported to occur as an alternative plasma membrane‐associated form on many cell types. However, the existence of cell surface IL‐1α (csIL‐1α) is contested, how IL‐1α tethers to the membrane is unknown, and signaling pathways controlling trafficking are not specified. Using a robust and fully validated system, we show that macrophages present bona fide csIL‐1α after ligation of TLRs. Pro‐IL‐1α tethers to the plasma membrane in part through IL‐1R2 or via association with a glycosylphosphatidylinositol‐anchored protein, and can be cleaved, activated, and released by proteases. csIL‐1α requires de novo protein synthesis and its trafficking to the plasma membrane is exquisitely sensitive to inhibition by IFN‐γ, independent of expression level. We also reveal how prior csIL‐1α detection could occur through inadvertent cell permeabilisation, and that senescent cells do not drive the senescent‐associated secretory phenotype via csIL‐1α, but rather via soluble IL‐1α. We believe these data are important for determining the local or systemic context in which IL‐1α can contribute to disease and/or physiological processes.
TLR ligation induces expression of IL‐1α on the cell surface of macrophages. IL‐1α tethers to the cell surface via IL‐1R2 and a GPI‐anchored protein. IFN‐γ signaling specifically inhibits the trafficking of IL‐1α to the cell surface.</description><identifier>ISSN: 0014-2980</identifier><identifier>EISSN: 1521-4141</identifier><identifier>DOI: 10.1002/eji.201948521</identifier><identifier>PMID: 32447774</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Adaptive immunity ; Animals ; Cell Membrane - metabolism ; Cell surface ; Cytokines ; Glycosylphosphatidylinositol ; Glycosylphosphatidylinositols - metabolism ; Humans ; IL‐1 ; Inflammation ; Inflammation - metabolism ; Innate immunity ; Interferon ; Interferon-gamma - metabolism ; Interleukin-1alpha - metabolism ; Macrophage ; Macrophages ; Macrophages - metabolism ; Male ; Membrane trafficking ; Mice ; Mice, Inbred C57BL ; Phenotypes ; Protein Binding - physiology ; Protein biosynthesis ; Protein transport ; Protein Transport - physiology ; Receptors, Interleukin-1 Type II - metabolism</subject><ispartof>European journal of immunology, 2020-11, Vol.50 (11), p.1663-1675</ispartof><rights>2020 The Authors. published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2020 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4037-d3ba0fdf95d3e6351e890b89de9855f65de75d25a79310726c676c41b5880e4f3</citedby><cites>FETCH-LOGICAL-c4037-d3ba0fdf95d3e6351e890b89de9855f65de75d25a79310726c676c41b5880e4f3</cites><orcidid>0000-0002-8215-8885</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Feji.201948521$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Feji.201948521$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32447774$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chan, Julie N.E.</creatorcontrib><creatorcontrib>Humphry, Melanie</creatorcontrib><creatorcontrib>Kitt, Lauren</creatorcontrib><creatorcontrib>Krzyzanska, Dominika</creatorcontrib><creatorcontrib>Filbey, Kara J.</creatorcontrib><creatorcontrib>Bennett, Martin R.</creatorcontrib><creatorcontrib>Clarke, Murray C.H.</creatorcontrib><title>Cell surface IL‐1α trafficking is specifically inhibited by interferon‐γ, and associates with the membrane via IL‐1R2 and GPI anchors</title><title>European journal of immunology</title><addtitle>Eur J Immunol</addtitle><description>IL‐1 is a powerful cytokine that drives inflammation and modulates adaptive immunity. Both IL‐1α and IL‐1β are translated as proforms that require cleavage for full cytokine activity and release, while IL‐1α is reported to occur as an alternative plasma membrane‐associated form on many cell types. However, the existence of cell surface IL‐1α (csIL‐1α) is contested, how IL‐1α tethers to the membrane is unknown, and signaling pathways controlling trafficking are not specified. Using a robust and fully validated system, we show that macrophages present bona fide csIL‐1α after ligation of TLRs. Pro‐IL‐1α tethers to the plasma membrane in part through IL‐1R2 or via association with a glycosylphosphatidylinositol‐anchored protein, and can be cleaved, activated, and released by proteases. csIL‐1α requires de novo protein synthesis and its trafficking to the plasma membrane is exquisitely sensitive to inhibition by IFN‐γ, independent of expression level. We also reveal how prior csIL‐1α detection could occur through inadvertent cell permeabilisation, and that senescent cells do not drive the senescent‐associated secretory phenotype via csIL‐1α, but rather via soluble IL‐1α. We believe these data are important for determining the local or systemic context in which IL‐1α can contribute to disease and/or physiological processes.
TLR ligation induces expression of IL‐1α on the cell surface of macrophages. IL‐1α tethers to the cell surface via IL‐1R2 and a GPI‐anchored protein. IFN‐γ signaling specifically inhibits the trafficking of IL‐1α to the cell surface.</description><subject>Adaptive immunity</subject><subject>Animals</subject><subject>Cell Membrane - metabolism</subject><subject>Cell surface</subject><subject>Cytokines</subject><subject>Glycosylphosphatidylinositol</subject><subject>Glycosylphosphatidylinositols - metabolism</subject><subject>Humans</subject><subject>IL‐1</subject><subject>Inflammation</subject><subject>Inflammation - metabolism</subject><subject>Innate immunity</subject><subject>Interferon</subject><subject>Interferon-gamma - metabolism</subject><subject>Interleukin-1alpha - metabolism</subject><subject>Macrophage</subject><subject>Macrophages</subject><subject>Macrophages - metabolism</subject><subject>Male</subject><subject>Membrane trafficking</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Phenotypes</subject><subject>Protein Binding - physiology</subject><subject>Protein biosynthesis</subject><subject>Protein transport</subject><subject>Protein Transport - physiology</subject><subject>Receptors, Interleukin-1 Type II - metabolism</subject><issn>0014-2980</issn><issn>1521-4141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc2KFDEUhYMoTju6dCsBNy6s8SaVVJKlNOPY0qCIrotU6sZOWz9tUjVD73wBwVcR32MewicxY7ezcOHqcOG7517OIeQxgzMGwF_gNpxxYEZoydkdsmBZCsEEu0sWAEwU3Gg4IQ9S2gKAqaS5T05KLoRSSizItyV2HU1z9NYhXa1_ff3Orn_QKVrvg_schk80JJp26EKebdftaRg2oQkTtrS5GSaMHuM45M3rn8-pHVpqUxpdsBMmehWmDZ02SHvsm2gHpJfBHu-853_oi3errG4zxvSQ3PO2S_joqKfk46vzD8vXxfrtxWr5cl04AaUq2rKx4FtvZFtiVUqG2kCjTYtGS-kr2aKSLZdWmZKB4pWrVOUEa6TWgMKXp-TZwXcXxy8zpqnuQ3I5ifzgOKeaC6ikApCQ0af_oNtxjkP-LlNSaZ2jlJkqDpSLY0oRfb2LobdxXzOob3qqc0_1bU-Zf3J0nZse21v6bzEZ4AfgKnS4_79bff5mJXSpyt-Hi6B3</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Chan, Julie N.E.</creator><creator>Humphry, Melanie</creator><creator>Kitt, Lauren</creator><creator>Krzyzanska, Dominika</creator><creator>Filbey, Kara J.</creator><creator>Bennett, Martin R.</creator><creator>Clarke, Murray C.H.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8215-8885</orcidid></search><sort><creationdate>202011</creationdate><title>Cell surface IL‐1α trafficking is specifically inhibited by interferon‐γ, and associates with the membrane via IL‐1R2 and GPI anchors</title><author>Chan, Julie N.E. ; Humphry, Melanie ; Kitt, Lauren ; Krzyzanska, Dominika ; Filbey, Kara J. ; Bennett, Martin R. ; Clarke, Murray C.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4037-d3ba0fdf95d3e6351e890b89de9855f65de75d25a79310726c676c41b5880e4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive immunity</topic><topic>Animals</topic><topic>Cell Membrane - metabolism</topic><topic>Cell surface</topic><topic>Cytokines</topic><topic>Glycosylphosphatidylinositol</topic><topic>Glycosylphosphatidylinositols - metabolism</topic><topic>Humans</topic><topic>IL‐1</topic><topic>Inflammation</topic><topic>Inflammation - metabolism</topic><topic>Innate immunity</topic><topic>Interferon</topic><topic>Interferon-gamma - metabolism</topic><topic>Interleukin-1alpha - metabolism</topic><topic>Macrophage</topic><topic>Macrophages</topic><topic>Macrophages - metabolism</topic><topic>Male</topic><topic>Membrane trafficking</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Phenotypes</topic><topic>Protein Binding - physiology</topic><topic>Protein biosynthesis</topic><topic>Protein transport</topic><topic>Protein Transport - physiology</topic><topic>Receptors, Interleukin-1 Type II - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan, Julie N.E.</creatorcontrib><creatorcontrib>Humphry, Melanie</creatorcontrib><creatorcontrib>Kitt, Lauren</creatorcontrib><creatorcontrib>Krzyzanska, Dominika</creatorcontrib><creatorcontrib>Filbey, Kara J.</creatorcontrib><creatorcontrib>Bennett, Martin R.</creatorcontrib><creatorcontrib>Clarke, Murray C.H.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chan, Julie N.E.</au><au>Humphry, Melanie</au><au>Kitt, Lauren</au><au>Krzyzanska, Dominika</au><au>Filbey, Kara J.</au><au>Bennett, Martin R.</au><au>Clarke, Murray C.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell surface IL‐1α trafficking is specifically inhibited by interferon‐γ, and associates with the membrane via IL‐1R2 and GPI anchors</atitle><jtitle>European journal of immunology</jtitle><addtitle>Eur J Immunol</addtitle><date>2020-11</date><risdate>2020</risdate><volume>50</volume><issue>11</issue><spage>1663</spage><epage>1675</epage><pages>1663-1675</pages><issn>0014-2980</issn><eissn>1521-4141</eissn><abstract>IL‐1 is a powerful cytokine that drives inflammation and modulates adaptive immunity. Both IL‐1α and IL‐1β are translated as proforms that require cleavage for full cytokine activity and release, while IL‐1α is reported to occur as an alternative plasma membrane‐associated form on many cell types. However, the existence of cell surface IL‐1α (csIL‐1α) is contested, how IL‐1α tethers to the membrane is unknown, and signaling pathways controlling trafficking are not specified. Using a robust and fully validated system, we show that macrophages present bona fide csIL‐1α after ligation of TLRs. Pro‐IL‐1α tethers to the plasma membrane in part through IL‐1R2 or via association with a glycosylphosphatidylinositol‐anchored protein, and can be cleaved, activated, and released by proteases. csIL‐1α requires de novo protein synthesis and its trafficking to the plasma membrane is exquisitely sensitive to inhibition by IFN‐γ, independent of expression level. We also reveal how prior csIL‐1α detection could occur through inadvertent cell permeabilisation, and that senescent cells do not drive the senescent‐associated secretory phenotype via csIL‐1α, but rather via soluble IL‐1α. We believe these data are important for determining the local or systemic context in which IL‐1α can contribute to disease and/or physiological processes.
TLR ligation induces expression of IL‐1α on the cell surface of macrophages. IL‐1α tethers to the cell surface via IL‐1R2 and a GPI‐anchored protein. IFN‐γ signaling specifically inhibits the trafficking of IL‐1α to the cell surface.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32447774</pmid><doi>10.1002/eji.201948521</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8215-8885</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-2980 |
ispartof | European journal of immunology, 2020-11, Vol.50 (11), p.1663-1675 |
issn | 0014-2980 1521-4141 |
language | eng |
recordid | cdi_proquest_miscellaneous_2406570050 |
source | MEDLINE; Wiley Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content |
subjects | Adaptive immunity Animals Cell Membrane - metabolism Cell surface Cytokines Glycosylphosphatidylinositol Glycosylphosphatidylinositols - metabolism Humans IL‐1 Inflammation Inflammation - metabolism Innate immunity Interferon Interferon-gamma - metabolism Interleukin-1alpha - metabolism Macrophage Macrophages Macrophages - metabolism Male Membrane trafficking Mice Mice, Inbred C57BL Phenotypes Protein Binding - physiology Protein biosynthesis Protein transport Protein Transport - physiology Receptors, Interleukin-1 Type II - metabolism |
title | Cell surface IL‐1α trafficking is specifically inhibited by interferon‐γ, and associates with the membrane via IL‐1R2 and GPI anchors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A42%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%20surface%20IL%E2%80%901%CE%B1%20trafficking%20is%20specifically%20inhibited%20by%20interferon%E2%80%90%CE%B3,%20and%20associates%20with%20the%20membrane%20via%20IL%E2%80%901R2%20and%20GPI%20anchors&rft.jtitle=European%20journal%20of%20immunology&rft.au=Chan,%20Julie%20N.E.&rft.date=2020-11&rft.volume=50&rft.issue=11&rft.spage=1663&rft.epage=1675&rft.pages=1663-1675&rft.issn=0014-2980&rft.eissn=1521-4141&rft_id=info:doi/10.1002/eji.201948521&rft_dat=%3Cproquest_cross%3E2406570050%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457882445&rft_id=info:pmid/32447774&rfr_iscdi=true |