Erratum to “Annotated normal CT data of the abdomen for deep learning: Challenges and strategies for implementation” [Diagn. Interv. Imaging. 101 (2020) 35–44]
Gespeichert in:
Veröffentlicht in: | Diagnostic and interventional imaging 2020-06, Vol.101 (6), p.427-427 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 427 |
---|---|
container_issue | 6 |
container_start_page | 427 |
container_title | Diagnostic and interventional imaging |
container_volume | 101 |
creator | Park, S. Chu, L.C. Fishman, E.K. Yuille, A.L. Vogelstein, B. Kinzler, K.W. Horton, K.M. Hruban, R.H. Zinreich, E.S. Fouladi, D.F. Shayesteh, S. Graves, J. Kawamoto, S. |
description | |
doi_str_mv | 10.1016/j.diii.2020.04.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2406569696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211568420301182</els_id><sourcerecordid>2406569696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1969-7ee7bd6f34f6f60b52489299c651a752b98d6bd6bb55fa8f6f169d435529c0813</originalsourceid><addsrcrecordid>eNp9kbFuFDEURUcIRKKQH6BArwzFDrbH9q4RTbQEiBSJJlQIWZ7xm4lXM_ZieyPR7T_QQsmP7Zfg0QZExWves3Tuta5uVT2npKaEyleb2jrnakYYqQmvCVGPqlPGKF0IueKP_7lPqvOUNqSMLELOn1YnDeNcCrU8rX5dxWjyboIc4LD_cel9yCajBR_iZEZY34I12UDoId8hmNaGCT30IYJF3MKIJnrnh9ewvjPjiH7ABMZbSLn44uDKc4bdtB2xKIu5C_6w_wmf3zoz-BqufcZ4X_ZkhmJUQ4kHF3Oul9CIw_4751-eVU96MyY8f9hn1ad3V7frD4ubj--v15c3i44qqRZLxGVrZd_wXvaStILxlWJKdVJQsxSsVSsrC9C2QvRmVSAqleWNEEx1ZEWbs-ri6LuN4esOU9aTSx2Oo_EYdkkzTqSQ5StZUHZEuxhSitjrbXSTid80JXpuSG_03JCek2jCdWmoiF48-O_aCe1fyZ8-CvDmCGBJee8w6tQ59B1aF7HL2gb3P__fN4iioQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406569696</pqid></control><display><type>article</type><title>Erratum to “Annotated normal CT data of the abdomen for deep learning: Challenges and strategies for implementation” [Diagn. Interv. Imaging. 101 (2020) 35–44]</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Park, S. ; Chu, L.C. ; Fishman, E.K. ; Yuille, A.L. ; Vogelstein, B. ; Kinzler, K.W. ; Horton, K.M. ; Hruban, R.H. ; Zinreich, E.S. ; Fouladi, D.F. ; Shayesteh, S. ; Graves, J. ; Kawamoto, S.</creator><creatorcontrib>Park, S. ; Chu, L.C. ; Fishman, E.K. ; Yuille, A.L. ; Vogelstein, B. ; Kinzler, K.W. ; Horton, K.M. ; Hruban, R.H. ; Zinreich, E.S. ; Fouladi, D.F. ; Shayesteh, S. ; Graves, J. ; Kawamoto, S.</creatorcontrib><identifier>ISSN: 2211-5684</identifier><identifier>EISSN: 2211-5684</identifier><identifier>DOI: 10.1016/j.diii.2020.04.009</identifier><identifier>PMID: 32446597</identifier><language>eng</language><publisher>France: Elsevier Masson SAS</publisher><ispartof>Diagnostic and interventional imaging, 2020-06, Vol.101 (6), p.427-427</ispartof><rights>2019 Société française de radiologie</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32446597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, S.</creatorcontrib><creatorcontrib>Chu, L.C.</creatorcontrib><creatorcontrib>Fishman, E.K.</creatorcontrib><creatorcontrib>Yuille, A.L.</creatorcontrib><creatorcontrib>Vogelstein, B.</creatorcontrib><creatorcontrib>Kinzler, K.W.</creatorcontrib><creatorcontrib>Horton, K.M.</creatorcontrib><creatorcontrib>Hruban, R.H.</creatorcontrib><creatorcontrib>Zinreich, E.S.</creatorcontrib><creatorcontrib>Fouladi, D.F.</creatorcontrib><creatorcontrib>Shayesteh, S.</creatorcontrib><creatorcontrib>Graves, J.</creatorcontrib><creatorcontrib>Kawamoto, S.</creatorcontrib><title>Erratum to “Annotated normal CT data of the abdomen for deep learning: Challenges and strategies for implementation” [Diagn. Interv. Imaging. 101 (2020) 35–44]</title><title>Diagnostic and interventional imaging</title><addtitle>Diagn Interv Imaging</addtitle><issn>2211-5684</issn><issn>2211-5684</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kbFuFDEURUcIRKKQH6BArwzFDrbH9q4RTbQEiBSJJlQIWZ7xm4lXM_ZieyPR7T_QQsmP7Zfg0QZExWves3Tuta5uVT2npKaEyleb2jrnakYYqQmvCVGPqlPGKF0IueKP_7lPqvOUNqSMLELOn1YnDeNcCrU8rX5dxWjyboIc4LD_cel9yCajBR_iZEZY34I12UDoId8hmNaGCT30IYJF3MKIJnrnh9ewvjPjiH7ABMZbSLn44uDKc4bdtB2xKIu5C_6w_wmf3zoz-BqufcZ4X_ZkhmJUQ4kHF3Oul9CIw_4751-eVU96MyY8f9hn1ad3V7frD4ubj--v15c3i44qqRZLxGVrZd_wXvaStILxlWJKdVJQsxSsVSsrC9C2QvRmVSAqleWNEEx1ZEWbs-ri6LuN4esOU9aTSx2Oo_EYdkkzTqSQ5StZUHZEuxhSitjrbXSTid80JXpuSG_03JCek2jCdWmoiF48-O_aCe1fyZ8-CvDmCGBJee8w6tQ59B1aF7HL2gb3P__fN4iioQ</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Park, S.</creator><creator>Chu, L.C.</creator><creator>Fishman, E.K.</creator><creator>Yuille, A.L.</creator><creator>Vogelstein, B.</creator><creator>Kinzler, K.W.</creator><creator>Horton, K.M.</creator><creator>Hruban, R.H.</creator><creator>Zinreich, E.S.</creator><creator>Fouladi, D.F.</creator><creator>Shayesteh, S.</creator><creator>Graves, J.</creator><creator>Kawamoto, S.</creator><general>Elsevier Masson SAS</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20200601</creationdate><title>Erratum to “Annotated normal CT data of the abdomen for deep learning: Challenges and strategies for implementation” [Diagn. Interv. Imaging. 101 (2020) 35–44]</title><author>Park, S. ; Chu, L.C. ; Fishman, E.K. ; Yuille, A.L. ; Vogelstein, B. ; Kinzler, K.W. ; Horton, K.M. ; Hruban, R.H. ; Zinreich, E.S. ; Fouladi, D.F. ; Shayesteh, S. ; Graves, J. ; Kawamoto, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1969-7ee7bd6f34f6f60b52489299c651a752b98d6bd6bb55fa8f6f169d435529c0813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, S.</creatorcontrib><creatorcontrib>Chu, L.C.</creatorcontrib><creatorcontrib>Fishman, E.K.</creatorcontrib><creatorcontrib>Yuille, A.L.</creatorcontrib><creatorcontrib>Vogelstein, B.</creatorcontrib><creatorcontrib>Kinzler, K.W.</creatorcontrib><creatorcontrib>Horton, K.M.</creatorcontrib><creatorcontrib>Hruban, R.H.</creatorcontrib><creatorcontrib>Zinreich, E.S.</creatorcontrib><creatorcontrib>Fouladi, D.F.</creatorcontrib><creatorcontrib>Shayesteh, S.</creatorcontrib><creatorcontrib>Graves, J.</creatorcontrib><creatorcontrib>Kawamoto, S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Diagnostic and interventional imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, S.</au><au>Chu, L.C.</au><au>Fishman, E.K.</au><au>Yuille, A.L.</au><au>Vogelstein, B.</au><au>Kinzler, K.W.</au><au>Horton, K.M.</au><au>Hruban, R.H.</au><au>Zinreich, E.S.</au><au>Fouladi, D.F.</au><au>Shayesteh, S.</au><au>Graves, J.</au><au>Kawamoto, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Erratum to “Annotated normal CT data of the abdomen for deep learning: Challenges and strategies for implementation” [Diagn. Interv. Imaging. 101 (2020) 35–44]</atitle><jtitle>Diagnostic and interventional imaging</jtitle><addtitle>Diagn Interv Imaging</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>101</volume><issue>6</issue><spage>427</spage><epage>427</epage><pages>427-427</pages><issn>2211-5684</issn><eissn>2211-5684</eissn><cop>France</cop><pub>Elsevier Masson SAS</pub><pmid>32446597</pmid><doi>10.1016/j.diii.2020.04.009</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2211-5684 |
ispartof | Diagnostic and interventional imaging, 2020-06, Vol.101 (6), p.427-427 |
issn | 2211-5684 2211-5684 |
language | eng |
recordid | cdi_proquest_miscellaneous_2406569696 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
title | Erratum to “Annotated normal CT data of the abdomen for deep learning: Challenges and strategies for implementation” [Diagn. Interv. Imaging. 101 (2020) 35–44] |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A22%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Erratum%20to%20%E2%80%9CAnnotated%20normal%20CT%20data%20of%20the%20abdomen%20for%20deep%20learning:%20Challenges%20and%20strategies%20for%20implementation%E2%80%9D%20%5BDiagn.%20Interv.%20Imaging.%20101%20(2020)%2035%E2%80%9344%5D&rft.jtitle=Diagnostic%20and%20interventional%20imaging&rft.au=Park,%20S.&rft.date=2020-06-01&rft.volume=101&rft.issue=6&rft.spage=427&rft.epage=427&rft.pages=427-427&rft.issn=2211-5684&rft.eissn=2211-5684&rft_id=info:doi/10.1016/j.diii.2020.04.009&rft_dat=%3Cproquest_cross%3E2406569696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406569696&rft_id=info:pmid/32446597&rft_els_id=S2211568420301182&rfr_iscdi=true |