Direct Observation of Aggregation‐Induced Emission Mechanism

The mechanism of aggregation‐induced emission, which overcomes the common aggregation‐caused quenching problem in organic optoelectronics, is revealed by monitoring the real time structural evolution and dynamics of electronic excited state with frequency and polarization resolved ultrafast UV/IR sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2020-08, Vol.59 (35), p.14903-14909
Hauptverfasser: Guan, Jianxin, Wei, Rong, Prlj, Antonio, Peng, Jie, Lin, Kun‐Han, Liu, Jitian, Han, Han, Corminboeuf, Clémence, Zhao, Dahui, Yu, Zhihao, Zheng, Junrong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14909
container_issue 35
container_start_page 14903
container_title Angewandte Chemie International Edition
container_volume 59
creator Guan, Jianxin
Wei, Rong
Prlj, Antonio
Peng, Jie
Lin, Kun‐Han
Liu, Jitian
Han, Han
Corminboeuf, Clémence
Zhao, Dahui
Yu, Zhihao
Zheng, Junrong
description The mechanism of aggregation‐induced emission, which overcomes the common aggregation‐caused quenching problem in organic optoelectronics, is revealed by monitoring the real time structural evolution and dynamics of electronic excited state with frequency and polarization resolved ultrafast UV/IR spectroscopy and theoretical calculations. The formation of Woodward–Hoffmann cyclic intermediates upon ultraviolet excitation is observed in dilute solutions of tetraphenylethylene and its derivatives but not in their respective solid. The ultrafast cyclization provides an efficient nonradiative relaxation pathway through crossing a conical intersection. Without such a reaction mechanism, the electronic excitation is preserved in the molecular solids and the molecule fluoresces efficiently, aided by the very slow intermolecular charge and energy transfers due to the well separated molecular packing arrangement. The mechanisms can be general for tuning the properties of chromophores in different phases for various important applications. The mechanism of aggregation‐induced emission is revealed by monitoring real time structural evolution and dynamics of the electronic excited state. The formation of Woodward–Hoffmann cyclic intermediates as nonradiative relaxation pathway is observed in dilute solutions of tetraphenylethylene upon ultraviolet excitation. In solid state, the electronic excitation is preserved, and the molecule fluoresces efficiently.
doi_str_mv 10.1002/anie.202004318
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2406308826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434379740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4768-c9a2866909b9fca62e354d1af3b639fecbdb146b1f884ca1ecd429a09ee4281a3</originalsourceid><addsrcrecordid>eNqF0MtOAjEUBuDGaATRrUtD4sbNYG902o0JQVQSlI2um07nDA6ZC7aMhp2P4DP6JBZBTNy4apt85-_Jj9ApwT2CMb00VQ49iinGnBG5h9qkT0nE4pjthztnLIpln7TQkffz4KXE4hC1GOWccKHa6Oo6d2CX3Wniwb2aZV5X3TrrDmYzB7Pv5-f7x7hKGwtpd1Tm3q_FPdjn8LMvj9FBZgoPJ9uzg55uRo_Du2gyvR0PB5PI8ljIyCpDpRAKq0Rl1ggKrM9TYjKWCKYysEmahH0SkknJrSFgU06VwQqAU0kM66CLTe7C1S8N-KUOq1goClNB3XhNORYMS0lFoOd_6LxuXBW2C4pxFquY46B6G2Vd7b2DTC9cXhq30gTrdbN63azeNRsGzraxTVJCuuM_VQagNuAtL2D1T5wePIxHv-FfJ-uFCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434379740</pqid></control><display><type>article</type><title>Direct Observation of Aggregation‐Induced Emission Mechanism</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Guan, Jianxin ; Wei, Rong ; Prlj, Antonio ; Peng, Jie ; Lin, Kun‐Han ; Liu, Jitian ; Han, Han ; Corminboeuf, Clémence ; Zhao, Dahui ; Yu, Zhihao ; Zheng, Junrong</creator><creatorcontrib>Guan, Jianxin ; Wei, Rong ; Prlj, Antonio ; Peng, Jie ; Lin, Kun‐Han ; Liu, Jitian ; Han, Han ; Corminboeuf, Clémence ; Zhao, Dahui ; Yu, Zhihao ; Zheng, Junrong</creatorcontrib><description>The mechanism of aggregation‐induced emission, which overcomes the common aggregation‐caused quenching problem in organic optoelectronics, is revealed by monitoring the real time structural evolution and dynamics of electronic excited state with frequency and polarization resolved ultrafast UV/IR spectroscopy and theoretical calculations. The formation of Woodward–Hoffmann cyclic intermediates upon ultraviolet excitation is observed in dilute solutions of tetraphenylethylene and its derivatives but not in their respective solid. The ultrafast cyclization provides an efficient nonradiative relaxation pathway through crossing a conical intersection. Without such a reaction mechanism, the electronic excitation is preserved in the molecular solids and the molecule fluoresces efficiently, aided by the very slow intermolecular charge and energy transfers due to the well separated molecular packing arrangement. The mechanisms can be general for tuning the properties of chromophores in different phases for various important applications. The mechanism of aggregation‐induced emission is revealed by monitoring real time structural evolution and dynamics of the electronic excited state. The formation of Woodward–Hoffmann cyclic intermediates as nonradiative relaxation pathway is observed in dilute solutions of tetraphenylethylene upon ultraviolet excitation. In solid state, the electronic excitation is preserved, and the molecule fluoresces efficiently.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202004318</identifier><identifier>PMID: 32441469</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Agglomeration ; aggregation-induced emission ; Charge transfer ; Chromophores ; conical intersections ; Emissions ; Energy charge ; Excitation ; Infrared spectroscopy ; Intermediates ; luminescence ; Mathematical analysis ; mechanism ; Optoelectronics ; Reaction mechanisms ; ultrafast spectroscopy</subject><ispartof>Angewandte Chemie International Edition, 2020-08, Vol.59 (35), p.14903-14909</ispartof><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4768-c9a2866909b9fca62e354d1af3b639fecbdb146b1f884ca1ecd429a09ee4281a3</citedby><cites>FETCH-LOGICAL-c4768-c9a2866909b9fca62e354d1af3b639fecbdb146b1f884ca1ecd429a09ee4281a3</cites><orcidid>0000-0003-0657-5123 ; 0000-0002-8984-7384</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202004318$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202004318$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32441469$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guan, Jianxin</creatorcontrib><creatorcontrib>Wei, Rong</creatorcontrib><creatorcontrib>Prlj, Antonio</creatorcontrib><creatorcontrib>Peng, Jie</creatorcontrib><creatorcontrib>Lin, Kun‐Han</creatorcontrib><creatorcontrib>Liu, Jitian</creatorcontrib><creatorcontrib>Han, Han</creatorcontrib><creatorcontrib>Corminboeuf, Clémence</creatorcontrib><creatorcontrib>Zhao, Dahui</creatorcontrib><creatorcontrib>Yu, Zhihao</creatorcontrib><creatorcontrib>Zheng, Junrong</creatorcontrib><title>Direct Observation of Aggregation‐Induced Emission Mechanism</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The mechanism of aggregation‐induced emission, which overcomes the common aggregation‐caused quenching problem in organic optoelectronics, is revealed by monitoring the real time structural evolution and dynamics of electronic excited state with frequency and polarization resolved ultrafast UV/IR spectroscopy and theoretical calculations. The formation of Woodward–Hoffmann cyclic intermediates upon ultraviolet excitation is observed in dilute solutions of tetraphenylethylene and its derivatives but not in their respective solid. The ultrafast cyclization provides an efficient nonradiative relaxation pathway through crossing a conical intersection. Without such a reaction mechanism, the electronic excitation is preserved in the molecular solids and the molecule fluoresces efficiently, aided by the very slow intermolecular charge and energy transfers due to the well separated molecular packing arrangement. The mechanisms can be general for tuning the properties of chromophores in different phases for various important applications. The mechanism of aggregation‐induced emission is revealed by monitoring real time structural evolution and dynamics of the electronic excited state. The formation of Woodward–Hoffmann cyclic intermediates as nonradiative relaxation pathway is observed in dilute solutions of tetraphenylethylene upon ultraviolet excitation. In solid state, the electronic excitation is preserved, and the molecule fluoresces efficiently.</description><subject>Agglomeration</subject><subject>aggregation-induced emission</subject><subject>Charge transfer</subject><subject>Chromophores</subject><subject>conical intersections</subject><subject>Emissions</subject><subject>Energy charge</subject><subject>Excitation</subject><subject>Infrared spectroscopy</subject><subject>Intermediates</subject><subject>luminescence</subject><subject>Mathematical analysis</subject><subject>mechanism</subject><subject>Optoelectronics</subject><subject>Reaction mechanisms</subject><subject>ultrafast spectroscopy</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0MtOAjEUBuDGaATRrUtD4sbNYG902o0JQVQSlI2um07nDA6ZC7aMhp2P4DP6JBZBTNy4apt85-_Jj9ApwT2CMb00VQ49iinGnBG5h9qkT0nE4pjthztnLIpln7TQkffz4KXE4hC1GOWccKHa6Oo6d2CX3Wniwb2aZV5X3TrrDmYzB7Pv5-f7x7hKGwtpd1Tm3q_FPdjn8LMvj9FBZgoPJ9uzg55uRo_Du2gyvR0PB5PI8ljIyCpDpRAKq0Rl1ggKrM9TYjKWCKYysEmahH0SkknJrSFgU06VwQqAU0kM66CLTe7C1S8N-KUOq1goClNB3XhNORYMS0lFoOd_6LxuXBW2C4pxFquY46B6G2Vd7b2DTC9cXhq30gTrdbN63azeNRsGzraxTVJCuuM_VQagNuAtL2D1T5wePIxHv-FfJ-uFCQ</recordid><startdate>20200824</startdate><enddate>20200824</enddate><creator>Guan, Jianxin</creator><creator>Wei, Rong</creator><creator>Prlj, Antonio</creator><creator>Peng, Jie</creator><creator>Lin, Kun‐Han</creator><creator>Liu, Jitian</creator><creator>Han, Han</creator><creator>Corminboeuf, Clémence</creator><creator>Zhao, Dahui</creator><creator>Yu, Zhihao</creator><creator>Zheng, Junrong</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0657-5123</orcidid><orcidid>https://orcid.org/0000-0002-8984-7384</orcidid></search><sort><creationdate>20200824</creationdate><title>Direct Observation of Aggregation‐Induced Emission Mechanism</title><author>Guan, Jianxin ; Wei, Rong ; Prlj, Antonio ; Peng, Jie ; Lin, Kun‐Han ; Liu, Jitian ; Han, Han ; Corminboeuf, Clémence ; Zhao, Dahui ; Yu, Zhihao ; Zheng, Junrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4768-c9a2866909b9fca62e354d1af3b639fecbdb146b1f884ca1ecd429a09ee4281a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agglomeration</topic><topic>aggregation-induced emission</topic><topic>Charge transfer</topic><topic>Chromophores</topic><topic>conical intersections</topic><topic>Emissions</topic><topic>Energy charge</topic><topic>Excitation</topic><topic>Infrared spectroscopy</topic><topic>Intermediates</topic><topic>luminescence</topic><topic>Mathematical analysis</topic><topic>mechanism</topic><topic>Optoelectronics</topic><topic>Reaction mechanisms</topic><topic>ultrafast spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Jianxin</creatorcontrib><creatorcontrib>Wei, Rong</creatorcontrib><creatorcontrib>Prlj, Antonio</creatorcontrib><creatorcontrib>Peng, Jie</creatorcontrib><creatorcontrib>Lin, Kun‐Han</creatorcontrib><creatorcontrib>Liu, Jitian</creatorcontrib><creatorcontrib>Han, Han</creatorcontrib><creatorcontrib>Corminboeuf, Clémence</creatorcontrib><creatorcontrib>Zhao, Dahui</creatorcontrib><creatorcontrib>Yu, Zhihao</creatorcontrib><creatorcontrib>Zheng, Junrong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guan, Jianxin</au><au>Wei, Rong</au><au>Prlj, Antonio</au><au>Peng, Jie</au><au>Lin, Kun‐Han</au><au>Liu, Jitian</au><au>Han, Han</au><au>Corminboeuf, Clémence</au><au>Zhao, Dahui</au><au>Yu, Zhihao</au><au>Zheng, Junrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Observation of Aggregation‐Induced Emission Mechanism</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2020-08-24</date><risdate>2020</risdate><volume>59</volume><issue>35</issue><spage>14903</spage><epage>14909</epage><pages>14903-14909</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The mechanism of aggregation‐induced emission, which overcomes the common aggregation‐caused quenching problem in organic optoelectronics, is revealed by monitoring the real time structural evolution and dynamics of electronic excited state with frequency and polarization resolved ultrafast UV/IR spectroscopy and theoretical calculations. The formation of Woodward–Hoffmann cyclic intermediates upon ultraviolet excitation is observed in dilute solutions of tetraphenylethylene and its derivatives but not in their respective solid. The ultrafast cyclization provides an efficient nonradiative relaxation pathway through crossing a conical intersection. Without such a reaction mechanism, the electronic excitation is preserved in the molecular solids and the molecule fluoresces efficiently, aided by the very slow intermolecular charge and energy transfers due to the well separated molecular packing arrangement. The mechanisms can be general for tuning the properties of chromophores in different phases for various important applications. The mechanism of aggregation‐induced emission is revealed by monitoring real time structural evolution and dynamics of the electronic excited state. The formation of Woodward–Hoffmann cyclic intermediates as nonradiative relaxation pathway is observed in dilute solutions of tetraphenylethylene upon ultraviolet excitation. In solid state, the electronic excitation is preserved, and the molecule fluoresces efficiently.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32441469</pmid><doi>10.1002/anie.202004318</doi><tpages>7</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-0657-5123</orcidid><orcidid>https://orcid.org/0000-0002-8984-7384</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2020-08, Vol.59 (35), p.14903-14909
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2406308826
source Wiley Online Library Journals Frontfile Complete
subjects Agglomeration
aggregation-induced emission
Charge transfer
Chromophores
conical intersections
Emissions
Energy charge
Excitation
Infrared spectroscopy
Intermediates
luminescence
Mathematical analysis
mechanism
Optoelectronics
Reaction mechanisms
ultrafast spectroscopy
title Direct Observation of Aggregation‐Induced Emission Mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T22%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Observation%20of%20Aggregation%E2%80%90Induced%20Emission%20Mechanism&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Guan,%20Jianxin&rft.date=2020-08-24&rft.volume=59&rft.issue=35&rft.spage=14903&rft.epage=14909&rft.pages=14903-14909&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202004318&rft_dat=%3Cproquest_cross%3E2434379740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434379740&rft_id=info:pmid/32441469&rfr_iscdi=true