Direct Observation of Aggregation‐Induced Emission Mechanism
The mechanism of aggregation‐induced emission, which overcomes the common aggregation‐caused quenching problem in organic optoelectronics, is revealed by monitoring the real time structural evolution and dynamics of electronic excited state with frequency and polarization resolved ultrafast UV/IR sp...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2020-08, Vol.59 (35), p.14903-14909 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14909 |
---|---|
container_issue | 35 |
container_start_page | 14903 |
container_title | Angewandte Chemie International Edition |
container_volume | 59 |
creator | Guan, Jianxin Wei, Rong Prlj, Antonio Peng, Jie Lin, Kun‐Han Liu, Jitian Han, Han Corminboeuf, Clémence Zhao, Dahui Yu, Zhihao Zheng, Junrong |
description | The mechanism of aggregation‐induced emission, which overcomes the common aggregation‐caused quenching problem in organic optoelectronics, is revealed by monitoring the real time structural evolution and dynamics of electronic excited state with frequency and polarization resolved ultrafast UV/IR spectroscopy and theoretical calculations. The formation of Woodward–Hoffmann cyclic intermediates upon ultraviolet excitation is observed in dilute solutions of tetraphenylethylene and its derivatives but not in their respective solid. The ultrafast cyclization provides an efficient nonradiative relaxation pathway through crossing a conical intersection. Without such a reaction mechanism, the electronic excitation is preserved in the molecular solids and the molecule fluoresces efficiently, aided by the very slow intermolecular charge and energy transfers due to the well separated molecular packing arrangement. The mechanisms can be general for tuning the properties of chromophores in different phases for various important applications.
The mechanism of aggregation‐induced emission is revealed by monitoring real time structural evolution and dynamics of the electronic excited state. The formation of Woodward–Hoffmann cyclic intermediates as nonradiative relaxation pathway is observed in dilute solutions of tetraphenylethylene upon ultraviolet excitation. In solid state, the electronic excitation is preserved, and the molecule fluoresces efficiently. |
doi_str_mv | 10.1002/anie.202004318 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2406308826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434379740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4768-c9a2866909b9fca62e354d1af3b639fecbdb146b1f884ca1ecd429a09ee4281a3</originalsourceid><addsrcrecordid>eNqF0MtOAjEUBuDGaATRrUtD4sbNYG902o0JQVQSlI2um07nDA6ZC7aMhp2P4DP6JBZBTNy4apt85-_Jj9ApwT2CMb00VQ49iinGnBG5h9qkT0nE4pjthztnLIpln7TQkffz4KXE4hC1GOWccKHa6Oo6d2CX3Wniwb2aZV5X3TrrDmYzB7Pv5-f7x7hKGwtpd1Tm3q_FPdjn8LMvj9FBZgoPJ9uzg55uRo_Du2gyvR0PB5PI8ljIyCpDpRAKq0Rl1ggKrM9TYjKWCKYysEmahH0SkknJrSFgU06VwQqAU0kM66CLTe7C1S8N-KUOq1goClNB3XhNORYMS0lFoOd_6LxuXBW2C4pxFquY46B6G2Vd7b2DTC9cXhq30gTrdbN63azeNRsGzraxTVJCuuM_VQagNuAtL2D1T5wePIxHv-FfJ-uFCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434379740</pqid></control><display><type>article</type><title>Direct Observation of Aggregation‐Induced Emission Mechanism</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Guan, Jianxin ; Wei, Rong ; Prlj, Antonio ; Peng, Jie ; Lin, Kun‐Han ; Liu, Jitian ; Han, Han ; Corminboeuf, Clémence ; Zhao, Dahui ; Yu, Zhihao ; Zheng, Junrong</creator><creatorcontrib>Guan, Jianxin ; Wei, Rong ; Prlj, Antonio ; Peng, Jie ; Lin, Kun‐Han ; Liu, Jitian ; Han, Han ; Corminboeuf, Clémence ; Zhao, Dahui ; Yu, Zhihao ; Zheng, Junrong</creatorcontrib><description>The mechanism of aggregation‐induced emission, which overcomes the common aggregation‐caused quenching problem in organic optoelectronics, is revealed by monitoring the real time structural evolution and dynamics of electronic excited state with frequency and polarization resolved ultrafast UV/IR spectroscopy and theoretical calculations. The formation of Woodward–Hoffmann cyclic intermediates upon ultraviolet excitation is observed in dilute solutions of tetraphenylethylene and its derivatives but not in their respective solid. The ultrafast cyclization provides an efficient nonradiative relaxation pathway through crossing a conical intersection. Without such a reaction mechanism, the electronic excitation is preserved in the molecular solids and the molecule fluoresces efficiently, aided by the very slow intermolecular charge and energy transfers due to the well separated molecular packing arrangement. The mechanisms can be general for tuning the properties of chromophores in different phases for various important applications.
The mechanism of aggregation‐induced emission is revealed by monitoring real time structural evolution and dynamics of the electronic excited state. The formation of Woodward–Hoffmann cyclic intermediates as nonradiative relaxation pathway is observed in dilute solutions of tetraphenylethylene upon ultraviolet excitation. In solid state, the electronic excitation is preserved, and the molecule fluoresces efficiently.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202004318</identifier><identifier>PMID: 32441469</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Agglomeration ; aggregation-induced emission ; Charge transfer ; Chromophores ; conical intersections ; Emissions ; Energy charge ; Excitation ; Infrared spectroscopy ; Intermediates ; luminescence ; Mathematical analysis ; mechanism ; Optoelectronics ; Reaction mechanisms ; ultrafast spectroscopy</subject><ispartof>Angewandte Chemie International Edition, 2020-08, Vol.59 (35), p.14903-14909</ispartof><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4768-c9a2866909b9fca62e354d1af3b639fecbdb146b1f884ca1ecd429a09ee4281a3</citedby><cites>FETCH-LOGICAL-c4768-c9a2866909b9fca62e354d1af3b639fecbdb146b1f884ca1ecd429a09ee4281a3</cites><orcidid>0000-0003-0657-5123 ; 0000-0002-8984-7384</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202004318$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202004318$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32441469$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guan, Jianxin</creatorcontrib><creatorcontrib>Wei, Rong</creatorcontrib><creatorcontrib>Prlj, Antonio</creatorcontrib><creatorcontrib>Peng, Jie</creatorcontrib><creatorcontrib>Lin, Kun‐Han</creatorcontrib><creatorcontrib>Liu, Jitian</creatorcontrib><creatorcontrib>Han, Han</creatorcontrib><creatorcontrib>Corminboeuf, Clémence</creatorcontrib><creatorcontrib>Zhao, Dahui</creatorcontrib><creatorcontrib>Yu, Zhihao</creatorcontrib><creatorcontrib>Zheng, Junrong</creatorcontrib><title>Direct Observation of Aggregation‐Induced Emission Mechanism</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The mechanism of aggregation‐induced emission, which overcomes the common aggregation‐caused quenching problem in organic optoelectronics, is revealed by monitoring the real time structural evolution and dynamics of electronic excited state with frequency and polarization resolved ultrafast UV/IR spectroscopy and theoretical calculations. The formation of Woodward–Hoffmann cyclic intermediates upon ultraviolet excitation is observed in dilute solutions of tetraphenylethylene and its derivatives but not in their respective solid. The ultrafast cyclization provides an efficient nonradiative relaxation pathway through crossing a conical intersection. Without such a reaction mechanism, the electronic excitation is preserved in the molecular solids and the molecule fluoresces efficiently, aided by the very slow intermolecular charge and energy transfers due to the well separated molecular packing arrangement. The mechanisms can be general for tuning the properties of chromophores in different phases for various important applications.
The mechanism of aggregation‐induced emission is revealed by monitoring real time structural evolution and dynamics of the electronic excited state. The formation of Woodward–Hoffmann cyclic intermediates as nonradiative relaxation pathway is observed in dilute solutions of tetraphenylethylene upon ultraviolet excitation. In solid state, the electronic excitation is preserved, and the molecule fluoresces efficiently.</description><subject>Agglomeration</subject><subject>aggregation-induced emission</subject><subject>Charge transfer</subject><subject>Chromophores</subject><subject>conical intersections</subject><subject>Emissions</subject><subject>Energy charge</subject><subject>Excitation</subject><subject>Infrared spectroscopy</subject><subject>Intermediates</subject><subject>luminescence</subject><subject>Mathematical analysis</subject><subject>mechanism</subject><subject>Optoelectronics</subject><subject>Reaction mechanisms</subject><subject>ultrafast spectroscopy</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0MtOAjEUBuDGaATRrUtD4sbNYG902o0JQVQSlI2um07nDA6ZC7aMhp2P4DP6JBZBTNy4apt85-_Jj9ApwT2CMb00VQ49iinGnBG5h9qkT0nE4pjthztnLIpln7TQkffz4KXE4hC1GOWccKHa6Oo6d2CX3Wniwb2aZV5X3TrrDmYzB7Pv5-f7x7hKGwtpd1Tm3q_FPdjn8LMvj9FBZgoPJ9uzg55uRo_Du2gyvR0PB5PI8ljIyCpDpRAKq0Rl1ggKrM9TYjKWCKYysEmahH0SkknJrSFgU06VwQqAU0kM66CLTe7C1S8N-KUOq1goClNB3XhNORYMS0lFoOd_6LxuXBW2C4pxFquY46B6G2Vd7b2DTC9cXhq30gTrdbN63azeNRsGzraxTVJCuuM_VQagNuAtL2D1T5wePIxHv-FfJ-uFCQ</recordid><startdate>20200824</startdate><enddate>20200824</enddate><creator>Guan, Jianxin</creator><creator>Wei, Rong</creator><creator>Prlj, Antonio</creator><creator>Peng, Jie</creator><creator>Lin, Kun‐Han</creator><creator>Liu, Jitian</creator><creator>Han, Han</creator><creator>Corminboeuf, Clémence</creator><creator>Zhao, Dahui</creator><creator>Yu, Zhihao</creator><creator>Zheng, Junrong</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0657-5123</orcidid><orcidid>https://orcid.org/0000-0002-8984-7384</orcidid></search><sort><creationdate>20200824</creationdate><title>Direct Observation of Aggregation‐Induced Emission Mechanism</title><author>Guan, Jianxin ; Wei, Rong ; Prlj, Antonio ; Peng, Jie ; Lin, Kun‐Han ; Liu, Jitian ; Han, Han ; Corminboeuf, Clémence ; Zhao, Dahui ; Yu, Zhihao ; Zheng, Junrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4768-c9a2866909b9fca62e354d1af3b639fecbdb146b1f884ca1ecd429a09ee4281a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agglomeration</topic><topic>aggregation-induced emission</topic><topic>Charge transfer</topic><topic>Chromophores</topic><topic>conical intersections</topic><topic>Emissions</topic><topic>Energy charge</topic><topic>Excitation</topic><topic>Infrared spectroscopy</topic><topic>Intermediates</topic><topic>luminescence</topic><topic>Mathematical analysis</topic><topic>mechanism</topic><topic>Optoelectronics</topic><topic>Reaction mechanisms</topic><topic>ultrafast spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Jianxin</creatorcontrib><creatorcontrib>Wei, Rong</creatorcontrib><creatorcontrib>Prlj, Antonio</creatorcontrib><creatorcontrib>Peng, Jie</creatorcontrib><creatorcontrib>Lin, Kun‐Han</creatorcontrib><creatorcontrib>Liu, Jitian</creatorcontrib><creatorcontrib>Han, Han</creatorcontrib><creatorcontrib>Corminboeuf, Clémence</creatorcontrib><creatorcontrib>Zhao, Dahui</creatorcontrib><creatorcontrib>Yu, Zhihao</creatorcontrib><creatorcontrib>Zheng, Junrong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guan, Jianxin</au><au>Wei, Rong</au><au>Prlj, Antonio</au><au>Peng, Jie</au><au>Lin, Kun‐Han</au><au>Liu, Jitian</au><au>Han, Han</au><au>Corminboeuf, Clémence</au><au>Zhao, Dahui</au><au>Yu, Zhihao</au><au>Zheng, Junrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Observation of Aggregation‐Induced Emission Mechanism</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2020-08-24</date><risdate>2020</risdate><volume>59</volume><issue>35</issue><spage>14903</spage><epage>14909</epage><pages>14903-14909</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The mechanism of aggregation‐induced emission, which overcomes the common aggregation‐caused quenching problem in organic optoelectronics, is revealed by monitoring the real time structural evolution and dynamics of electronic excited state with frequency and polarization resolved ultrafast UV/IR spectroscopy and theoretical calculations. The formation of Woodward–Hoffmann cyclic intermediates upon ultraviolet excitation is observed in dilute solutions of tetraphenylethylene and its derivatives but not in their respective solid. The ultrafast cyclization provides an efficient nonradiative relaxation pathway through crossing a conical intersection. Without such a reaction mechanism, the electronic excitation is preserved in the molecular solids and the molecule fluoresces efficiently, aided by the very slow intermolecular charge and energy transfers due to the well separated molecular packing arrangement. The mechanisms can be general for tuning the properties of chromophores in different phases for various important applications.
The mechanism of aggregation‐induced emission is revealed by monitoring real time structural evolution and dynamics of the electronic excited state. The formation of Woodward–Hoffmann cyclic intermediates as nonradiative relaxation pathway is observed in dilute solutions of tetraphenylethylene upon ultraviolet excitation. In solid state, the electronic excitation is preserved, and the molecule fluoresces efficiently.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32441469</pmid><doi>10.1002/anie.202004318</doi><tpages>7</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-0657-5123</orcidid><orcidid>https://orcid.org/0000-0002-8984-7384</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2020-08, Vol.59 (35), p.14903-14909 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2406308826 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Agglomeration aggregation-induced emission Charge transfer Chromophores conical intersections Emissions Energy charge Excitation Infrared spectroscopy Intermediates luminescence Mathematical analysis mechanism Optoelectronics Reaction mechanisms ultrafast spectroscopy |
title | Direct Observation of Aggregation‐Induced Emission Mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T22%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Observation%20of%20Aggregation%E2%80%90Induced%20Emission%20Mechanism&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Guan,%20Jianxin&rft.date=2020-08-24&rft.volume=59&rft.issue=35&rft.spage=14903&rft.epage=14909&rft.pages=14903-14909&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202004318&rft_dat=%3Cproquest_cross%3E2434379740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434379740&rft_id=info:pmid/32441469&rfr_iscdi=true |