Methanol-Essential Growth of Corynebacterium glutamicum : Adaptive Laboratory Evolution Overcomes Limitation due to Methanethiol Assimilation Pathway
Methanol is a sustainable substrate for biotechnology. In addition to natural methylotrophs, metabolic engineering has gained attention for transfer of methylotrophy. Here, we engineered for methanol-dependent growth with a sugar co-substrate. Heterologous expression of genes for methanol dehydrogen...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2020-05, Vol.21 (10), p.3617 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 3617 |
container_title | International journal of molecular sciences |
container_volume | 21 |
creator | Hennig, Guido Haupka, Carsten Brito, Luciana F Rückert, Christian Cahoreau, Edern Heux, Stéphanie Wendisch, Volker F |
description | Methanol is a sustainable substrate for biotechnology. In addition to natural methylotrophs, metabolic engineering has gained attention for transfer of methylotrophy. Here, we engineered
for methanol-dependent growth with a sugar co-substrate. Heterologous expression of genes for methanol dehydrogenase from
and of ribulose monophosphate pathway genes for hexulose phosphate synthase and isomerase from
enabled methanol-dependent growth of mutants carrying one of two independent metabolic cut-offs, i.e., either lacking ribose-5-phosphate isomerase or ribulose-5-phosphate epimerase. Whole genome sequencing of strains selected by adaptive laboratory evolution (ALE) for faster methanol-dependent growth was performed. Subsequently, three mutations were identified that caused improved methanol-dependent growth by (1) increased plasmid copy numbers, (2) enhanced riboflavin supply and (3) reduced formation of the methionine-analogue O-methyl-homoserine in the methanethiol pathway. Our findings serve as a foundation for the engineering of
to unleash the full potential of methanol as a carbon source in biotechnological processes. |
doi_str_mv | 10.3390/ijms21103617 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2406305568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2406305568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-3a24b88767d69cfaa82c186c55fa2734412d9cd7912189db36d87f0d35ab39633</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhiMEoqVw44x8BImAP2LH4VBptVpapKBygLM1cZzGVRIvtpNqfwj_Fy8p1cLFM5p5_I5m3ix7TfAHxir80d6NgRKCmSDlk-ycFJTmGIvy6Ul-lr0I4Q5jyiivnmdnjBYFk5KfZ7--mtjD5IZ8F4KZooUBXXl3H3vkOrR1_jCZBnQ03s4juh3mCKPVKf2ENi3so10MqqFxHmJi0W5xCbFuQjeL8dqNJqDajjbCn2I7GxQdWmemx7oBbUJIwLAC3yD293B4mT3rYAjm1UO8yH583n3fXuf1zdWX7abOdSGLmDOgRSNlKcpWVLoDkFQTKTTnHdCSFQWhbaXbsiKUyKptmGhl2eGWcWhYJRi7yC5X3f3cjKbV6QAeBrX3dgR_UA6s-rcz2V7dukWVtKw4Jkng3SrQ__ftelOrYw3TCgsm-HJk3z4M8-7nbEJUow3aDEM6hZuDokUiMedCJvT9imrvQvCme9QmWB1dV6euJ_zN6RqP8F-b2W8KRqw9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406305568</pqid></control><display><type>article</type><title>Methanol-Essential Growth of Corynebacterium glutamicum : Adaptive Laboratory Evolution Overcomes Limitation due to Methanethiol Assimilation Pathway</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Hennig, Guido ; Haupka, Carsten ; Brito, Luciana F ; Rückert, Christian ; Cahoreau, Edern ; Heux, Stéphanie ; Wendisch, Volker F</creator><creatorcontrib>Hennig, Guido ; Haupka, Carsten ; Brito, Luciana F ; Rückert, Christian ; Cahoreau, Edern ; Heux, Stéphanie ; Wendisch, Volker F</creatorcontrib><description>Methanol is a sustainable substrate for biotechnology. In addition to natural methylotrophs, metabolic engineering has gained attention for transfer of methylotrophy. Here, we engineered
for methanol-dependent growth with a sugar co-substrate. Heterologous expression of genes for methanol dehydrogenase from
and of ribulose monophosphate pathway genes for hexulose phosphate synthase and isomerase from
enabled methanol-dependent growth of mutants carrying one of two independent metabolic cut-offs, i.e., either lacking ribose-5-phosphate isomerase or ribulose-5-phosphate epimerase. Whole genome sequencing of strains selected by adaptive laboratory evolution (ALE) for faster methanol-dependent growth was performed. Subsequently, three mutations were identified that caused improved methanol-dependent growth by (1) increased plasmid copy numbers, (2) enhanced riboflavin supply and (3) reduced formation of the methionine-analogue O-methyl-homoserine in the methanethiol pathway. Our findings serve as a foundation for the engineering of
to unleash the full potential of methanol as a carbon source in biotechnological processes.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21103617</identifier><identifier>PMID: 32443885</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><subject>Alcohol Oxidoreductases - genetics ; Alcohol Oxidoreductases - metabolism ; Aldehyde-Lyases - genetics ; Aldehyde-Lyases - metabolism ; Aldose-Ketose Isomerases - genetics ; Aldose-Ketose Isomerases - metabolism ; Bacillus subtilis - genetics ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biochemistry, Molecular Biology ; Chemical Sciences ; Corynebacterium glutamicum - genetics ; Corynebacterium glutamicum - metabolism ; Directed Molecular Evolution - methods ; Industrial Microbiology - methods ; Life Sciences ; Metabolic Engineering - methods ; Methanol - metabolism ; Riboflavin - metabolism ; Ribulosephosphates - metabolism ; Sulfhydryl Compounds - metabolism ; Transgenes</subject><ispartof>International journal of molecular sciences, 2020-05, Vol.21 (10), p.3617</ispartof><rights>Attribution</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-3a24b88767d69cfaa82c186c55fa2734412d9cd7912189db36d87f0d35ab39633</citedby><cites>FETCH-LOGICAL-c484t-3a24b88767d69cfaa82c186c55fa2734412d9cd7912189db36d87f0d35ab39633</cites><orcidid>0000-0002-9722-4435 ; 0000-0003-3473-0012 ; 0000-0002-6285-1084 ; 0000-0002-0349-8284 ; 0000-0001-8637-0448 ; 0000-0003-1312-3002</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7279501/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7279501/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32443885$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02906365$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hennig, Guido</creatorcontrib><creatorcontrib>Haupka, Carsten</creatorcontrib><creatorcontrib>Brito, Luciana F</creatorcontrib><creatorcontrib>Rückert, Christian</creatorcontrib><creatorcontrib>Cahoreau, Edern</creatorcontrib><creatorcontrib>Heux, Stéphanie</creatorcontrib><creatorcontrib>Wendisch, Volker F</creatorcontrib><title>Methanol-Essential Growth of Corynebacterium glutamicum : Adaptive Laboratory Evolution Overcomes Limitation due to Methanethiol Assimilation Pathway</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Methanol is a sustainable substrate for biotechnology. In addition to natural methylotrophs, metabolic engineering has gained attention for transfer of methylotrophy. Here, we engineered
for methanol-dependent growth with a sugar co-substrate. Heterologous expression of genes for methanol dehydrogenase from
and of ribulose monophosphate pathway genes for hexulose phosphate synthase and isomerase from
enabled methanol-dependent growth of mutants carrying one of two independent metabolic cut-offs, i.e., either lacking ribose-5-phosphate isomerase or ribulose-5-phosphate epimerase. Whole genome sequencing of strains selected by adaptive laboratory evolution (ALE) for faster methanol-dependent growth was performed. Subsequently, three mutations were identified that caused improved methanol-dependent growth by (1) increased plasmid copy numbers, (2) enhanced riboflavin supply and (3) reduced formation of the methionine-analogue O-methyl-homoserine in the methanethiol pathway. Our findings serve as a foundation for the engineering of
to unleash the full potential of methanol as a carbon source in biotechnological processes.</description><subject>Alcohol Oxidoreductases - genetics</subject><subject>Alcohol Oxidoreductases - metabolism</subject><subject>Aldehyde-Lyases - genetics</subject><subject>Aldehyde-Lyases - metabolism</subject><subject>Aldose-Ketose Isomerases - genetics</subject><subject>Aldose-Ketose Isomerases - metabolism</subject><subject>Bacillus subtilis - genetics</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biochemistry, Molecular Biology</subject><subject>Chemical Sciences</subject><subject>Corynebacterium glutamicum - genetics</subject><subject>Corynebacterium glutamicum - metabolism</subject><subject>Directed Molecular Evolution - methods</subject><subject>Industrial Microbiology - methods</subject><subject>Life Sciences</subject><subject>Metabolic Engineering - methods</subject><subject>Methanol - metabolism</subject><subject>Riboflavin - metabolism</subject><subject>Ribulosephosphates - metabolism</subject><subject>Sulfhydryl Compounds - metabolism</subject><subject>Transgenes</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAQhiMEoqVw44x8BImAP2LH4VBptVpapKBygLM1cZzGVRIvtpNqfwj_Fy8p1cLFM5p5_I5m3ix7TfAHxir80d6NgRKCmSDlk-ycFJTmGIvy6Ul-lr0I4Q5jyiivnmdnjBYFk5KfZ7--mtjD5IZ8F4KZooUBXXl3H3vkOrR1_jCZBnQ03s4juh3mCKPVKf2ENi3so10MqqFxHmJi0W5xCbFuQjeL8dqNJqDajjbCn2I7GxQdWmemx7oBbUJIwLAC3yD293B4mT3rYAjm1UO8yH583n3fXuf1zdWX7abOdSGLmDOgRSNlKcpWVLoDkFQTKTTnHdCSFQWhbaXbsiKUyKptmGhl2eGWcWhYJRi7yC5X3f3cjKbV6QAeBrX3dgR_UA6s-rcz2V7dukWVtKw4Jkng3SrQ__ftelOrYw3TCgsm-HJk3z4M8-7nbEJUow3aDEM6hZuDokUiMedCJvT9imrvQvCme9QmWB1dV6euJ_zN6RqP8F-b2W8KRqw9</recordid><startdate>20200520</startdate><enddate>20200520</enddate><creator>Hennig, Guido</creator><creator>Haupka, Carsten</creator><creator>Brito, Luciana F</creator><creator>Rückert, Christian</creator><creator>Cahoreau, Edern</creator><creator>Heux, Stéphanie</creator><creator>Wendisch, Volker F</creator><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9722-4435</orcidid><orcidid>https://orcid.org/0000-0003-3473-0012</orcidid><orcidid>https://orcid.org/0000-0002-6285-1084</orcidid><orcidid>https://orcid.org/0000-0002-0349-8284</orcidid><orcidid>https://orcid.org/0000-0001-8637-0448</orcidid><orcidid>https://orcid.org/0000-0003-1312-3002</orcidid></search><sort><creationdate>20200520</creationdate><title>Methanol-Essential Growth of Corynebacterium glutamicum : Adaptive Laboratory Evolution Overcomes Limitation due to Methanethiol Assimilation Pathway</title><author>Hennig, Guido ; Haupka, Carsten ; Brito, Luciana F ; Rückert, Christian ; Cahoreau, Edern ; Heux, Stéphanie ; Wendisch, Volker F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-3a24b88767d69cfaa82c186c55fa2734412d9cd7912189db36d87f0d35ab39633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alcohol Oxidoreductases - genetics</topic><topic>Alcohol Oxidoreductases - metabolism</topic><topic>Aldehyde-Lyases - genetics</topic><topic>Aldehyde-Lyases - metabolism</topic><topic>Aldose-Ketose Isomerases - genetics</topic><topic>Aldose-Ketose Isomerases - metabolism</topic><topic>Bacillus subtilis - genetics</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biochemistry, Molecular Biology</topic><topic>Chemical Sciences</topic><topic>Corynebacterium glutamicum - genetics</topic><topic>Corynebacterium glutamicum - metabolism</topic><topic>Directed Molecular Evolution - methods</topic><topic>Industrial Microbiology - methods</topic><topic>Life Sciences</topic><topic>Metabolic Engineering - methods</topic><topic>Methanol - metabolism</topic><topic>Riboflavin - metabolism</topic><topic>Ribulosephosphates - metabolism</topic><topic>Sulfhydryl Compounds - metabolism</topic><topic>Transgenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hennig, Guido</creatorcontrib><creatorcontrib>Haupka, Carsten</creatorcontrib><creatorcontrib>Brito, Luciana F</creatorcontrib><creatorcontrib>Rückert, Christian</creatorcontrib><creatorcontrib>Cahoreau, Edern</creatorcontrib><creatorcontrib>Heux, Stéphanie</creatorcontrib><creatorcontrib>Wendisch, Volker F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hennig, Guido</au><au>Haupka, Carsten</au><au>Brito, Luciana F</au><au>Rückert, Christian</au><au>Cahoreau, Edern</au><au>Heux, Stéphanie</au><au>Wendisch, Volker F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methanol-Essential Growth of Corynebacterium glutamicum : Adaptive Laboratory Evolution Overcomes Limitation due to Methanethiol Assimilation Pathway</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2020-05-20</date><risdate>2020</risdate><volume>21</volume><issue>10</issue><spage>3617</spage><pages>3617-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Methanol is a sustainable substrate for biotechnology. In addition to natural methylotrophs, metabolic engineering has gained attention for transfer of methylotrophy. Here, we engineered
for methanol-dependent growth with a sugar co-substrate. Heterologous expression of genes for methanol dehydrogenase from
and of ribulose monophosphate pathway genes for hexulose phosphate synthase and isomerase from
enabled methanol-dependent growth of mutants carrying one of two independent metabolic cut-offs, i.e., either lacking ribose-5-phosphate isomerase or ribulose-5-phosphate epimerase. Whole genome sequencing of strains selected by adaptive laboratory evolution (ALE) for faster methanol-dependent growth was performed. Subsequently, three mutations were identified that caused improved methanol-dependent growth by (1) increased plasmid copy numbers, (2) enhanced riboflavin supply and (3) reduced formation of the methionine-analogue O-methyl-homoserine in the methanethiol pathway. Our findings serve as a foundation for the engineering of
to unleash the full potential of methanol as a carbon source in biotechnological processes.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>32443885</pmid><doi>10.3390/ijms21103617</doi><orcidid>https://orcid.org/0000-0002-9722-4435</orcidid><orcidid>https://orcid.org/0000-0003-3473-0012</orcidid><orcidid>https://orcid.org/0000-0002-6285-1084</orcidid><orcidid>https://orcid.org/0000-0002-0349-8284</orcidid><orcidid>https://orcid.org/0000-0001-8637-0448</orcidid><orcidid>https://orcid.org/0000-0003-1312-3002</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2020-05, Vol.21 (10), p.3617 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_proquest_miscellaneous_2406305568 |
source | MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Alcohol Oxidoreductases - genetics Alcohol Oxidoreductases - metabolism Aldehyde-Lyases - genetics Aldehyde-Lyases - metabolism Aldose-Ketose Isomerases - genetics Aldose-Ketose Isomerases - metabolism Bacillus subtilis - genetics Bacterial Proteins - genetics Bacterial Proteins - metabolism Biochemistry, Molecular Biology Chemical Sciences Corynebacterium glutamicum - genetics Corynebacterium glutamicum - metabolism Directed Molecular Evolution - methods Industrial Microbiology - methods Life Sciences Metabolic Engineering - methods Methanol - metabolism Riboflavin - metabolism Ribulosephosphates - metabolism Sulfhydryl Compounds - metabolism Transgenes |
title | Methanol-Essential Growth of Corynebacterium glutamicum : Adaptive Laboratory Evolution Overcomes Limitation due to Methanethiol Assimilation Pathway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A11%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methanol-Essential%20Growth%20of%20Corynebacterium%20glutamicum%20:%20Adaptive%20Laboratory%20Evolution%20Overcomes%20Limitation%20due%20to%20Methanethiol%20Assimilation%20Pathway&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Hennig,%20Guido&rft.date=2020-05-20&rft.volume=21&rft.issue=10&rft.spage=3617&rft.pages=3617-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21103617&rft_dat=%3Cproquest_pubme%3E2406305568%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406305568&rft_id=info:pmid/32443885&rfr_iscdi=true |