DNA-directed nanofabrication of high-performance carbon nanotube field-effect transistors

Biofabricated semiconductor arrays exhibit smaller channel pitches than those created using existing lithographic methods. However, the metal ions within biolattices and the submicrometer dimensions of typical biotemplates result in both poor transport performance and a lack of large-area array unif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2020-05, Vol.368 (6493), p.878-881
Hauptverfasser: Zhao, Mengyu, Chen, Yahong, Wang, Kexin, Zhang, Zhaoxuan, Streit, Jason K, Fagan, Jeffrey A, Tang, Jianshi, Zheng, Ming, Yang, Chaoyong, Zhu, Zhi, Sun, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 881
container_issue 6493
container_start_page 878
container_title Science (American Association for the Advancement of Science)
container_volume 368
creator Zhao, Mengyu
Chen, Yahong
Wang, Kexin
Zhang, Zhaoxuan
Streit, Jason K
Fagan, Jeffrey A
Tang, Jianshi
Zheng, Ming
Yang, Chaoyong
Zhu, Zhi
Sun, Wei
description Biofabricated semiconductor arrays exhibit smaller channel pitches than those created using existing lithographic methods. However, the metal ions within biolattices and the submicrometer dimensions of typical biotemplates result in both poor transport performance and a lack of large-area array uniformity. Using DNA-templated parallel carbon nanotube (CNT) arrays as model systems, we developed a rinsing-after-fixing approach to improve the key transport performance metrics by more than a factor of 10 compared with those of previous biotemplated field-effect transistors. We also used spatially confined placement of assembled CNT arrays within polymethyl methacrylate cavities to demonstrate centimeter-scale alignment. At the interface of high-performance electronics and biomolecular self-assembly, such approaches may enable the production of scalable biotemplated electronics that are sensitive to local biological environments.
doi_str_mv 10.1126/science.aaz7435
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2406304443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2406304443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-8f2c90d3f0bc34edb3a48e9e69a884a5bf27ccf96035516a7af3567637a4575a3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EgvIxs6FILCwpTs6O4xGVT6mCBQam6OKcwaiNi50M8Otx1cLAdMP73Hunh7HTgk-Loqwuo3HUG5oifisBcodNCq5lrksOu2zCOVR5zZU8YIcxfnCeMg377ABKAVrpYsJerx-v8s4FMgN1WY-9t9gGZ3Bwvs-8zd7d23u-omB9WGI6lRkMbYrW6DC2lFlHiy4na1NFNgTso4uDD_GY7VlcRDrZziP2cnvzPLvP5093D7OreW5AF0Ne29Jo3oHlrQFBXQsoatJUaaxrgbK1pTLG6oqDlEWFCi3ISlWgUEglEY7YxaZ3FfznSHFoli4aWiywJz_GphS8Ai6EgISe_0M__Bj69N2akgrKRCbqckOZ4GMMZJtVcEsMX03Bm7X1Zmu92VpPG2fb3rFdUvfH_2qGHxPWgFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405732630</pqid></control><display><type>article</type><title>DNA-directed nanofabrication of high-performance carbon nanotube field-effect transistors</title><source>American Association for the Advancement of Science</source><creator>Zhao, Mengyu ; Chen, Yahong ; Wang, Kexin ; Zhang, Zhaoxuan ; Streit, Jason K ; Fagan, Jeffrey A ; Tang, Jianshi ; Zheng, Ming ; Yang, Chaoyong ; Zhu, Zhi ; Sun, Wei</creator><creatorcontrib>Zhao, Mengyu ; Chen, Yahong ; Wang, Kexin ; Zhang, Zhaoxuan ; Streit, Jason K ; Fagan, Jeffrey A ; Tang, Jianshi ; Zheng, Ming ; Yang, Chaoyong ; Zhu, Zhi ; Sun, Wei</creatorcontrib><description>Biofabricated semiconductor arrays exhibit smaller channel pitches than those created using existing lithographic methods. However, the metal ions within biolattices and the submicrometer dimensions of typical biotemplates result in both poor transport performance and a lack of large-area array uniformity. Using DNA-templated parallel carbon nanotube (CNT) arrays as model systems, we developed a rinsing-after-fixing approach to improve the key transport performance metrics by more than a factor of 10 compared with those of previous biotemplated field-effect transistors. We also used spatially confined placement of assembled CNT arrays within polymethyl methacrylate cavities to demonstrate centimeter-scale alignment. At the interface of high-performance electronics and biomolecular self-assembly, such approaches may enable the production of scalable biotemplated electronics that are sensitive to local biological environments.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaz7435</identifier><identifier>PMID: 32439791</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Alignment ; Arrays ; Bricks ; Carbon ; Carbon nanotubes ; Contact resistance ; Deoxyribonucleic acid ; DNA ; Electronics ; Field effect transistors ; Metal ions ; Nanofabrication ; Nanotechnology ; Nanotubes ; Performance measurement ; Polymers ; Polymethyl methacrylate ; Polymethylmethacrylate ; Self-assembly ; Semiconductor devices ; Silicon ; Silicon wafers ; Single-stranded DNA ; Substrates ; Transistors ; Transport</subject><ispartof>Science (American Association for the Advancement of Science), 2020-05, Vol.368 (6493), p.878-881</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-8f2c90d3f0bc34edb3a48e9e69a884a5bf27ccf96035516a7af3567637a4575a3</citedby><cites>FETCH-LOGICAL-c391t-8f2c90d3f0bc34edb3a48e9e69a884a5bf27ccf96035516a7af3567637a4575a3</cites><orcidid>0000-0003-2412-5433 ; 0000-0001-6496-7323 ; 0000-0002-3287-4920 ; 0000-0001-6382-5171 ; 0000-0002-2374-5342 ; 0000-0003-1483-5554 ; 0000-0003-4145-1994 ; 0000-0003-3948-7269 ; 0000-0003-3209-2141 ; 0000-0001-8369-0067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,2873,2874,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32439791$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Mengyu</creatorcontrib><creatorcontrib>Chen, Yahong</creatorcontrib><creatorcontrib>Wang, Kexin</creatorcontrib><creatorcontrib>Zhang, Zhaoxuan</creatorcontrib><creatorcontrib>Streit, Jason K</creatorcontrib><creatorcontrib>Fagan, Jeffrey A</creatorcontrib><creatorcontrib>Tang, Jianshi</creatorcontrib><creatorcontrib>Zheng, Ming</creatorcontrib><creatorcontrib>Yang, Chaoyong</creatorcontrib><creatorcontrib>Zhu, Zhi</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><title>DNA-directed nanofabrication of high-performance carbon nanotube field-effect transistors</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Biofabricated semiconductor arrays exhibit smaller channel pitches than those created using existing lithographic methods. However, the metal ions within biolattices and the submicrometer dimensions of typical biotemplates result in both poor transport performance and a lack of large-area array uniformity. Using DNA-templated parallel carbon nanotube (CNT) arrays as model systems, we developed a rinsing-after-fixing approach to improve the key transport performance metrics by more than a factor of 10 compared with those of previous biotemplated field-effect transistors. We also used spatially confined placement of assembled CNT arrays within polymethyl methacrylate cavities to demonstrate centimeter-scale alignment. At the interface of high-performance electronics and biomolecular self-assembly, such approaches may enable the production of scalable biotemplated electronics that are sensitive to local biological environments.</description><subject>Alignment</subject><subject>Arrays</subject><subject>Bricks</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Contact resistance</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Electronics</subject><subject>Field effect transistors</subject><subject>Metal ions</subject><subject>Nanofabrication</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Performance measurement</subject><subject>Polymers</subject><subject>Polymethyl methacrylate</subject><subject>Polymethylmethacrylate</subject><subject>Self-assembly</subject><subject>Semiconductor devices</subject><subject>Silicon</subject><subject>Silicon wafers</subject><subject>Single-stranded DNA</subject><subject>Substrates</subject><subject>Transistors</subject><subject>Transport</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkD1PwzAQhi0EgvIxs6FILCwpTs6O4xGVT6mCBQam6OKcwaiNi50M8Otx1cLAdMP73Hunh7HTgk-Loqwuo3HUG5oifisBcodNCq5lrksOu2zCOVR5zZU8YIcxfnCeMg377ABKAVrpYsJerx-v8s4FMgN1WY-9t9gGZ3Bwvs-8zd7d23u-omB9WGI6lRkMbYrW6DC2lFlHiy4na1NFNgTso4uDD_GY7VlcRDrZziP2cnvzPLvP5093D7OreW5AF0Ne29Jo3oHlrQFBXQsoatJUaaxrgbK1pTLG6oqDlEWFCi3ISlWgUEglEY7YxaZ3FfznSHFoli4aWiywJz_GphS8Ai6EgISe_0M__Bj69N2akgrKRCbqckOZ4GMMZJtVcEsMX03Bm7X1Zmu92VpPG2fb3rFdUvfH_2qGHxPWgFg</recordid><startdate>20200522</startdate><enddate>20200522</enddate><creator>Zhao, Mengyu</creator><creator>Chen, Yahong</creator><creator>Wang, Kexin</creator><creator>Zhang, Zhaoxuan</creator><creator>Streit, Jason K</creator><creator>Fagan, Jeffrey A</creator><creator>Tang, Jianshi</creator><creator>Zheng, Ming</creator><creator>Yang, Chaoyong</creator><creator>Zhu, Zhi</creator><creator>Sun, Wei</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2412-5433</orcidid><orcidid>https://orcid.org/0000-0001-6496-7323</orcidid><orcidid>https://orcid.org/0000-0002-3287-4920</orcidid><orcidid>https://orcid.org/0000-0001-6382-5171</orcidid><orcidid>https://orcid.org/0000-0002-2374-5342</orcidid><orcidid>https://orcid.org/0000-0003-1483-5554</orcidid><orcidid>https://orcid.org/0000-0003-4145-1994</orcidid><orcidid>https://orcid.org/0000-0003-3948-7269</orcidid><orcidid>https://orcid.org/0000-0003-3209-2141</orcidid><orcidid>https://orcid.org/0000-0001-8369-0067</orcidid></search><sort><creationdate>20200522</creationdate><title>DNA-directed nanofabrication of high-performance carbon nanotube field-effect transistors</title><author>Zhao, Mengyu ; Chen, Yahong ; Wang, Kexin ; Zhang, Zhaoxuan ; Streit, Jason K ; Fagan, Jeffrey A ; Tang, Jianshi ; Zheng, Ming ; Yang, Chaoyong ; Zhu, Zhi ; Sun, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-8f2c90d3f0bc34edb3a48e9e69a884a5bf27ccf96035516a7af3567637a4575a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alignment</topic><topic>Arrays</topic><topic>Bricks</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Contact resistance</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Electronics</topic><topic>Field effect transistors</topic><topic>Metal ions</topic><topic>Nanofabrication</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Performance measurement</topic><topic>Polymers</topic><topic>Polymethyl methacrylate</topic><topic>Polymethylmethacrylate</topic><topic>Self-assembly</topic><topic>Semiconductor devices</topic><topic>Silicon</topic><topic>Silicon wafers</topic><topic>Single-stranded DNA</topic><topic>Substrates</topic><topic>Transistors</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Mengyu</creatorcontrib><creatorcontrib>Chen, Yahong</creatorcontrib><creatorcontrib>Wang, Kexin</creatorcontrib><creatorcontrib>Zhang, Zhaoxuan</creatorcontrib><creatorcontrib>Streit, Jason K</creatorcontrib><creatorcontrib>Fagan, Jeffrey A</creatorcontrib><creatorcontrib>Tang, Jianshi</creatorcontrib><creatorcontrib>Zheng, Ming</creatorcontrib><creatorcontrib>Yang, Chaoyong</creatorcontrib><creatorcontrib>Zhu, Zhi</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Mengyu</au><au>Chen, Yahong</au><au>Wang, Kexin</au><au>Zhang, Zhaoxuan</au><au>Streit, Jason K</au><au>Fagan, Jeffrey A</au><au>Tang, Jianshi</au><au>Zheng, Ming</au><au>Yang, Chaoyong</au><au>Zhu, Zhi</au><au>Sun, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA-directed nanofabrication of high-performance carbon nanotube field-effect transistors</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2020-05-22</date><risdate>2020</risdate><volume>368</volume><issue>6493</issue><spage>878</spage><epage>881</epage><pages>878-881</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Biofabricated semiconductor arrays exhibit smaller channel pitches than those created using existing lithographic methods. However, the metal ions within biolattices and the submicrometer dimensions of typical biotemplates result in both poor transport performance and a lack of large-area array uniformity. Using DNA-templated parallel carbon nanotube (CNT) arrays as model systems, we developed a rinsing-after-fixing approach to improve the key transport performance metrics by more than a factor of 10 compared with those of previous biotemplated field-effect transistors. We also used spatially confined placement of assembled CNT arrays within polymethyl methacrylate cavities to demonstrate centimeter-scale alignment. At the interface of high-performance electronics and biomolecular self-assembly, such approaches may enable the production of scalable biotemplated electronics that are sensitive to local biological environments.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>32439791</pmid><doi>10.1126/science.aaz7435</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-2412-5433</orcidid><orcidid>https://orcid.org/0000-0001-6496-7323</orcidid><orcidid>https://orcid.org/0000-0002-3287-4920</orcidid><orcidid>https://orcid.org/0000-0001-6382-5171</orcidid><orcidid>https://orcid.org/0000-0002-2374-5342</orcidid><orcidid>https://orcid.org/0000-0003-1483-5554</orcidid><orcidid>https://orcid.org/0000-0003-4145-1994</orcidid><orcidid>https://orcid.org/0000-0003-3948-7269</orcidid><orcidid>https://orcid.org/0000-0003-3209-2141</orcidid><orcidid>https://orcid.org/0000-0001-8369-0067</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2020-05, Vol.368 (6493), p.878-881
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_2406304443
source American Association for the Advancement of Science
subjects Alignment
Arrays
Bricks
Carbon
Carbon nanotubes
Contact resistance
Deoxyribonucleic acid
DNA
Electronics
Field effect transistors
Metal ions
Nanofabrication
Nanotechnology
Nanotubes
Performance measurement
Polymers
Polymethyl methacrylate
Polymethylmethacrylate
Self-assembly
Semiconductor devices
Silicon
Silicon wafers
Single-stranded DNA
Substrates
Transistors
Transport
title DNA-directed nanofabrication of high-performance carbon nanotube field-effect transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A08%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA-directed%20nanofabrication%20of%20high-performance%20carbon%20nanotube%20field-effect%20transistors&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Zhao,%20Mengyu&rft.date=2020-05-22&rft.volume=368&rft.issue=6493&rft.spage=878&rft.epage=881&rft.pages=878-881&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aaz7435&rft_dat=%3Cproquest_cross%3E2406304443%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405732630&rft_id=info:pmid/32439791&rfr_iscdi=true