DNA-directed nanofabrication of high-performance carbon nanotube field-effect transistors
Biofabricated semiconductor arrays exhibit smaller channel pitches than those created using existing lithographic methods. However, the metal ions within biolattices and the submicrometer dimensions of typical biotemplates result in both poor transport performance and a lack of large-area array unif...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2020-05, Vol.368 (6493), p.878-881 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 881 |
---|---|
container_issue | 6493 |
container_start_page | 878 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 368 |
creator | Zhao, Mengyu Chen, Yahong Wang, Kexin Zhang, Zhaoxuan Streit, Jason K Fagan, Jeffrey A Tang, Jianshi Zheng, Ming Yang, Chaoyong Zhu, Zhi Sun, Wei |
description | Biofabricated semiconductor arrays exhibit smaller channel pitches than those created using existing lithographic methods. However, the metal ions within biolattices and the submicrometer dimensions of typical biotemplates result in both poor transport performance and a lack of large-area array uniformity. Using DNA-templated parallel carbon nanotube (CNT) arrays as model systems, we developed a rinsing-after-fixing approach to improve the key transport performance metrics by more than a factor of 10 compared with those of previous biotemplated field-effect transistors. We also used spatially confined placement of assembled CNT arrays within polymethyl methacrylate cavities to demonstrate centimeter-scale alignment. At the interface of high-performance electronics and biomolecular self-assembly, such approaches may enable the production of scalable biotemplated electronics that are sensitive to local biological environments. |
doi_str_mv | 10.1126/science.aaz7435 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2406304443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2406304443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-8f2c90d3f0bc34edb3a48e9e69a884a5bf27ccf96035516a7af3567637a4575a3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EgvIxs6FILCwpTs6O4xGVT6mCBQam6OKcwaiNi50M8Otx1cLAdMP73Hunh7HTgk-Loqwuo3HUG5oifisBcodNCq5lrksOu2zCOVR5zZU8YIcxfnCeMg377ABKAVrpYsJerx-v8s4FMgN1WY-9t9gGZ3Bwvs-8zd7d23u-omB9WGI6lRkMbYrW6DC2lFlHiy4na1NFNgTso4uDD_GY7VlcRDrZziP2cnvzPLvP5093D7OreW5AF0Ne29Jo3oHlrQFBXQsoatJUaaxrgbK1pTLG6oqDlEWFCi3ISlWgUEglEY7YxaZ3FfznSHFoli4aWiywJz_GphS8Ai6EgISe_0M__Bj69N2akgrKRCbqckOZ4GMMZJtVcEsMX03Bm7X1Zmu92VpPG2fb3rFdUvfH_2qGHxPWgFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405732630</pqid></control><display><type>article</type><title>DNA-directed nanofabrication of high-performance carbon nanotube field-effect transistors</title><source>American Association for the Advancement of Science</source><creator>Zhao, Mengyu ; Chen, Yahong ; Wang, Kexin ; Zhang, Zhaoxuan ; Streit, Jason K ; Fagan, Jeffrey A ; Tang, Jianshi ; Zheng, Ming ; Yang, Chaoyong ; Zhu, Zhi ; Sun, Wei</creator><creatorcontrib>Zhao, Mengyu ; Chen, Yahong ; Wang, Kexin ; Zhang, Zhaoxuan ; Streit, Jason K ; Fagan, Jeffrey A ; Tang, Jianshi ; Zheng, Ming ; Yang, Chaoyong ; Zhu, Zhi ; Sun, Wei</creatorcontrib><description>Biofabricated semiconductor arrays exhibit smaller channel pitches than those created using existing lithographic methods. However, the metal ions within biolattices and the submicrometer dimensions of typical biotemplates result in both poor transport performance and a lack of large-area array uniformity. Using DNA-templated parallel carbon nanotube (CNT) arrays as model systems, we developed a rinsing-after-fixing approach to improve the key transport performance metrics by more than a factor of 10 compared with those of previous biotemplated field-effect transistors. We also used spatially confined placement of assembled CNT arrays within polymethyl methacrylate cavities to demonstrate centimeter-scale alignment. At the interface of high-performance electronics and biomolecular self-assembly, such approaches may enable the production of scalable biotemplated electronics that are sensitive to local biological environments.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaz7435</identifier><identifier>PMID: 32439791</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Alignment ; Arrays ; Bricks ; Carbon ; Carbon nanotubes ; Contact resistance ; Deoxyribonucleic acid ; DNA ; Electronics ; Field effect transistors ; Metal ions ; Nanofabrication ; Nanotechnology ; Nanotubes ; Performance measurement ; Polymers ; Polymethyl methacrylate ; Polymethylmethacrylate ; Self-assembly ; Semiconductor devices ; Silicon ; Silicon wafers ; Single-stranded DNA ; Substrates ; Transistors ; Transport</subject><ispartof>Science (American Association for the Advancement of Science), 2020-05, Vol.368 (6493), p.878-881</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-8f2c90d3f0bc34edb3a48e9e69a884a5bf27ccf96035516a7af3567637a4575a3</citedby><cites>FETCH-LOGICAL-c391t-8f2c90d3f0bc34edb3a48e9e69a884a5bf27ccf96035516a7af3567637a4575a3</cites><orcidid>0000-0003-2412-5433 ; 0000-0001-6496-7323 ; 0000-0002-3287-4920 ; 0000-0001-6382-5171 ; 0000-0002-2374-5342 ; 0000-0003-1483-5554 ; 0000-0003-4145-1994 ; 0000-0003-3948-7269 ; 0000-0003-3209-2141 ; 0000-0001-8369-0067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,2873,2874,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32439791$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Mengyu</creatorcontrib><creatorcontrib>Chen, Yahong</creatorcontrib><creatorcontrib>Wang, Kexin</creatorcontrib><creatorcontrib>Zhang, Zhaoxuan</creatorcontrib><creatorcontrib>Streit, Jason K</creatorcontrib><creatorcontrib>Fagan, Jeffrey A</creatorcontrib><creatorcontrib>Tang, Jianshi</creatorcontrib><creatorcontrib>Zheng, Ming</creatorcontrib><creatorcontrib>Yang, Chaoyong</creatorcontrib><creatorcontrib>Zhu, Zhi</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><title>DNA-directed nanofabrication of high-performance carbon nanotube field-effect transistors</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Biofabricated semiconductor arrays exhibit smaller channel pitches than those created using existing lithographic methods. However, the metal ions within biolattices and the submicrometer dimensions of typical biotemplates result in both poor transport performance and a lack of large-area array uniformity. Using DNA-templated parallel carbon nanotube (CNT) arrays as model systems, we developed a rinsing-after-fixing approach to improve the key transport performance metrics by more than a factor of 10 compared with those of previous biotemplated field-effect transistors. We also used spatially confined placement of assembled CNT arrays within polymethyl methacrylate cavities to demonstrate centimeter-scale alignment. At the interface of high-performance electronics and biomolecular self-assembly, such approaches may enable the production of scalable biotemplated electronics that are sensitive to local biological environments.</description><subject>Alignment</subject><subject>Arrays</subject><subject>Bricks</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Contact resistance</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Electronics</subject><subject>Field effect transistors</subject><subject>Metal ions</subject><subject>Nanofabrication</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Performance measurement</subject><subject>Polymers</subject><subject>Polymethyl methacrylate</subject><subject>Polymethylmethacrylate</subject><subject>Self-assembly</subject><subject>Semiconductor devices</subject><subject>Silicon</subject><subject>Silicon wafers</subject><subject>Single-stranded DNA</subject><subject>Substrates</subject><subject>Transistors</subject><subject>Transport</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkD1PwzAQhi0EgvIxs6FILCwpTs6O4xGVT6mCBQam6OKcwaiNi50M8Otx1cLAdMP73Hunh7HTgk-Loqwuo3HUG5oifisBcodNCq5lrksOu2zCOVR5zZU8YIcxfnCeMg377ABKAVrpYsJerx-v8s4FMgN1WY-9t9gGZ3Bwvs-8zd7d23u-omB9WGI6lRkMbYrW6DC2lFlHiy4na1NFNgTso4uDD_GY7VlcRDrZziP2cnvzPLvP5093D7OreW5AF0Ne29Jo3oHlrQFBXQsoatJUaaxrgbK1pTLG6oqDlEWFCi3ISlWgUEglEY7YxaZ3FfznSHFoli4aWiywJz_GphS8Ai6EgISe_0M__Bj69N2akgrKRCbqckOZ4GMMZJtVcEsMX03Bm7X1Zmu92VpPG2fb3rFdUvfH_2qGHxPWgFg</recordid><startdate>20200522</startdate><enddate>20200522</enddate><creator>Zhao, Mengyu</creator><creator>Chen, Yahong</creator><creator>Wang, Kexin</creator><creator>Zhang, Zhaoxuan</creator><creator>Streit, Jason K</creator><creator>Fagan, Jeffrey A</creator><creator>Tang, Jianshi</creator><creator>Zheng, Ming</creator><creator>Yang, Chaoyong</creator><creator>Zhu, Zhi</creator><creator>Sun, Wei</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2412-5433</orcidid><orcidid>https://orcid.org/0000-0001-6496-7323</orcidid><orcidid>https://orcid.org/0000-0002-3287-4920</orcidid><orcidid>https://orcid.org/0000-0001-6382-5171</orcidid><orcidid>https://orcid.org/0000-0002-2374-5342</orcidid><orcidid>https://orcid.org/0000-0003-1483-5554</orcidid><orcidid>https://orcid.org/0000-0003-4145-1994</orcidid><orcidid>https://orcid.org/0000-0003-3948-7269</orcidid><orcidid>https://orcid.org/0000-0003-3209-2141</orcidid><orcidid>https://orcid.org/0000-0001-8369-0067</orcidid></search><sort><creationdate>20200522</creationdate><title>DNA-directed nanofabrication of high-performance carbon nanotube field-effect transistors</title><author>Zhao, Mengyu ; Chen, Yahong ; Wang, Kexin ; Zhang, Zhaoxuan ; Streit, Jason K ; Fagan, Jeffrey A ; Tang, Jianshi ; Zheng, Ming ; Yang, Chaoyong ; Zhu, Zhi ; Sun, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-8f2c90d3f0bc34edb3a48e9e69a884a5bf27ccf96035516a7af3567637a4575a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alignment</topic><topic>Arrays</topic><topic>Bricks</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Contact resistance</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Electronics</topic><topic>Field effect transistors</topic><topic>Metal ions</topic><topic>Nanofabrication</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Performance measurement</topic><topic>Polymers</topic><topic>Polymethyl methacrylate</topic><topic>Polymethylmethacrylate</topic><topic>Self-assembly</topic><topic>Semiconductor devices</topic><topic>Silicon</topic><topic>Silicon wafers</topic><topic>Single-stranded DNA</topic><topic>Substrates</topic><topic>Transistors</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Mengyu</creatorcontrib><creatorcontrib>Chen, Yahong</creatorcontrib><creatorcontrib>Wang, Kexin</creatorcontrib><creatorcontrib>Zhang, Zhaoxuan</creatorcontrib><creatorcontrib>Streit, Jason K</creatorcontrib><creatorcontrib>Fagan, Jeffrey A</creatorcontrib><creatorcontrib>Tang, Jianshi</creatorcontrib><creatorcontrib>Zheng, Ming</creatorcontrib><creatorcontrib>Yang, Chaoyong</creatorcontrib><creatorcontrib>Zhu, Zhi</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Mengyu</au><au>Chen, Yahong</au><au>Wang, Kexin</au><au>Zhang, Zhaoxuan</au><au>Streit, Jason K</au><au>Fagan, Jeffrey A</au><au>Tang, Jianshi</au><au>Zheng, Ming</au><au>Yang, Chaoyong</au><au>Zhu, Zhi</au><au>Sun, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA-directed nanofabrication of high-performance carbon nanotube field-effect transistors</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2020-05-22</date><risdate>2020</risdate><volume>368</volume><issue>6493</issue><spage>878</spage><epage>881</epage><pages>878-881</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Biofabricated semiconductor arrays exhibit smaller channel pitches than those created using existing lithographic methods. However, the metal ions within biolattices and the submicrometer dimensions of typical biotemplates result in both poor transport performance and a lack of large-area array uniformity. Using DNA-templated parallel carbon nanotube (CNT) arrays as model systems, we developed a rinsing-after-fixing approach to improve the key transport performance metrics by more than a factor of 10 compared with those of previous biotemplated field-effect transistors. We also used spatially confined placement of assembled CNT arrays within polymethyl methacrylate cavities to demonstrate centimeter-scale alignment. At the interface of high-performance electronics and biomolecular self-assembly, such approaches may enable the production of scalable biotemplated electronics that are sensitive to local biological environments.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>32439791</pmid><doi>10.1126/science.aaz7435</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-2412-5433</orcidid><orcidid>https://orcid.org/0000-0001-6496-7323</orcidid><orcidid>https://orcid.org/0000-0002-3287-4920</orcidid><orcidid>https://orcid.org/0000-0001-6382-5171</orcidid><orcidid>https://orcid.org/0000-0002-2374-5342</orcidid><orcidid>https://orcid.org/0000-0003-1483-5554</orcidid><orcidid>https://orcid.org/0000-0003-4145-1994</orcidid><orcidid>https://orcid.org/0000-0003-3948-7269</orcidid><orcidid>https://orcid.org/0000-0003-3209-2141</orcidid><orcidid>https://orcid.org/0000-0001-8369-0067</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2020-05, Vol.368 (6493), p.878-881 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_2406304443 |
source | American Association for the Advancement of Science |
subjects | Alignment Arrays Bricks Carbon Carbon nanotubes Contact resistance Deoxyribonucleic acid DNA Electronics Field effect transistors Metal ions Nanofabrication Nanotechnology Nanotubes Performance measurement Polymers Polymethyl methacrylate Polymethylmethacrylate Self-assembly Semiconductor devices Silicon Silicon wafers Single-stranded DNA Substrates Transistors Transport |
title | DNA-directed nanofabrication of high-performance carbon nanotube field-effect transistors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A08%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA-directed%20nanofabrication%20of%20high-performance%20carbon%20nanotube%20field-effect%20transistors&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Zhao,%20Mengyu&rft.date=2020-05-22&rft.volume=368&rft.issue=6493&rft.spage=878&rft.epage=881&rft.pages=878-881&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aaz7435&rft_dat=%3Cproquest_cross%3E2406304443%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405732630&rft_id=info:pmid/32439791&rfr_iscdi=true |