A prototype open-ended multichannel intracavitary-interstitial hybrid applicator for gynecological high-dose-rate brachytherapy
This manuscript introduces a novel open-ended, multichannel intracavitary-interstitial hybrid applicator for gynecological high-dose-rate brachytherapy. A prototype was three-dimensionally (3D) printed using polylactic acid. The device was 25 mm in diameter and 150 mm in length, with eight evenly sp...
Gespeichert in:
Veröffentlicht in: | Radiological physics and technology 2020-06, Vol.13 (2), p.187-194 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This manuscript introduces a novel open-ended, multichannel intracavitary-interstitial hybrid applicator for gynecological high-dose-rate brachytherapy. A prototype was three-dimensionally (3D) printed using polylactic acid. The device was 25 mm in diameter and 150 mm in length, with eight evenly spaced peripheral channels around a central tandem channel, each 2.7 mm in diameter and with 2 mm source-to-cylinder-surface-distance. In contrast to conventional multichannel applicators, the new hybrid applicator was designed with open distal ends. Interstitial needles utilized in peripheral channels provided a closed environment for sources. The applicator body served as a template to aid in the placement of central tandem and peripheral needles. The physical prototype appropriately accommodated needles, tandem, and locking devices and, thus, was deemed magnetic resonance (MR) conditional. In our retrospective in silico studies of two representative prior patients, we simultaneously increased the target coverage and decreased the organ-at-risk (OAR) dose to 2 cc (D
2cc
). Specifically, the minimum dose covering 90% of the volume (D
90%
) was improved by 2.1% (9.2%) minimum (maximum) of the prescription dose. Additionally, the OAR D
2cc
was decreased by 0.5% (4.5%), 8.2% (12.9%), 3.9% (9.2%), and 4.6% (19.8%) minimum (maximum) of the prescription dose to the sigmoid, bladder, rectum, and bowel, respectively. This prototype demonstrated significant potential for patients in whom it would be useful to provide multichannel capabilities beyond the applicator body. |
---|---|
ISSN: | 1865-0333 1865-0341 |
DOI: | 10.1007/s12194-020-00567-2 |