Quantum Trajectory Analysis of Single Microwave Photon Detection by Nanocalorimetry
We apply quantum trajectory techniques to analyze a realistic setup of a superconducting qubit coupled to a heat bath formed by a resistor, a system that yields explicit expressions of the relevant transition rates to be used in the analysis. We discuss the main characteristics of the jump trajector...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2020-05, Vol.124 (17), p.170601-170601, Article 170601 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 170601 |
---|---|
container_issue | 17 |
container_start_page | 170601 |
container_title | Physical review letters |
container_volume | 124 |
creator | Karimi, Bayan Pekola, Jukka P |
description | We apply quantum trajectory techniques to analyze a realistic setup of a superconducting qubit coupled to a heat bath formed by a resistor, a system that yields explicit expressions of the relevant transition rates to be used in the analysis. We discuss the main characteristics of the jump trajectories and relate them to the expected outcomes ("clicks") of a fluorescence measurement using the resistor as a nanocalorimeter. As the main practical outcome, we present a model that predicts the time-domain response of a realistic calorimeter subject to single microwave photons, incorporating the intrinsic noise due to the fundamental thermal fluctuations of the absorber and finite bandwidth of a thermometer. |
doi_str_mv | 10.1103/physrevlett.124.170601 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2404050717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2405321081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-9bde34e9179c7ba3ac38aed1e081358f0e4285801449c25da5a9ab96fca458f03</originalsourceid><addsrcrecordid>eNpdkE1PwzAMhiMEgjH4C6gSFy4ddpKu7RHxLQ0YX-cqzVzo1DUjSYf678kYcOBkS35s630YO0IYIYI4Xb73ztKqIe9HyOUIUxgDbrEBQprHKaLcZgMAgXEOkO6xfefmAIB8nO2yPcElcp7JAXt-7FTru0X0YtWctDe2j85a1fSudpGpoue6fWsouqu1NZ9qRdH03XjTRhfkA12Hruyje9UarRpj6wV52x-wnUo1jg5_6pC9Xl2-nN_Ek4fr2_OzSawlJD7OyxkJSTmmuU5LJZQWmaIZEmQokqwCkjxLMkApc82TmUpUrsp8XGkl12MxZCebu0trPjpyvljUTlPTqJZM5wouITyCFNOAHv9D56azIec3lQiO66dDNt5QIawLeqtiGSIp2xcIxVp7MQ3an2g1CdqLoL3YaA-LRz_nu3JBs7-1X8_iCx8LgYM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405321081</pqid></control><display><type>article</type><title>Quantum Trajectory Analysis of Single Microwave Photon Detection by Nanocalorimetry</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Karimi, Bayan ; Pekola, Jukka P</creator><creatorcontrib>Karimi, Bayan ; Pekola, Jukka P</creatorcontrib><description>We apply quantum trajectory techniques to analyze a realistic setup of a superconducting qubit coupled to a heat bath formed by a resistor, a system that yields explicit expressions of the relevant transition rates to be used in the analysis. We discuss the main characteristics of the jump trajectories and relate them to the expected outcomes ("clicks") of a fluorescence measurement using the resistor as a nanocalorimeter. As the main practical outcome, we present a model that predicts the time-domain response of a realistic calorimeter subject to single microwave photons, incorporating the intrinsic noise due to the fundamental thermal fluctuations of the absorber and finite bandwidth of a thermometer.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.124.170601</identifier><identifier>PMID: 32412284</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Fluorescence ; Photons ; Qubits (quantum computing) ; Trajectory analysis</subject><ispartof>Physical review letters, 2020-05, Vol.124 (17), p.170601-170601, Article 170601</ispartof><rights>Copyright American Physical Society May 1, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-9bde34e9179c7ba3ac38aed1e081358f0e4285801449c25da5a9ab96fca458f03</citedby><cites>FETCH-LOGICAL-c405t-9bde34e9179c7ba3ac38aed1e081358f0e4285801449c25da5a9ab96fca458f03</cites><orcidid>0000-0003-0984-1829 ; 0000-0003-4752-4277</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32412284$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Karimi, Bayan</creatorcontrib><creatorcontrib>Pekola, Jukka P</creatorcontrib><title>Quantum Trajectory Analysis of Single Microwave Photon Detection by Nanocalorimetry</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We apply quantum trajectory techniques to analyze a realistic setup of a superconducting qubit coupled to a heat bath formed by a resistor, a system that yields explicit expressions of the relevant transition rates to be used in the analysis. We discuss the main characteristics of the jump trajectories and relate them to the expected outcomes ("clicks") of a fluorescence measurement using the resistor as a nanocalorimeter. As the main practical outcome, we present a model that predicts the time-domain response of a realistic calorimeter subject to single microwave photons, incorporating the intrinsic noise due to the fundamental thermal fluctuations of the absorber and finite bandwidth of a thermometer.</description><subject>Fluorescence</subject><subject>Photons</subject><subject>Qubits (quantum computing)</subject><subject>Trajectory analysis</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkE1PwzAMhiMEgjH4C6gSFy4ddpKu7RHxLQ0YX-cqzVzo1DUjSYf678kYcOBkS35s630YO0IYIYI4Xb73ztKqIe9HyOUIUxgDbrEBQprHKaLcZgMAgXEOkO6xfefmAIB8nO2yPcElcp7JAXt-7FTru0X0YtWctDe2j85a1fSudpGpoue6fWsouqu1NZ9qRdH03XjTRhfkA12Hruyje9UarRpj6wV52x-wnUo1jg5_6pC9Xl2-nN_Ek4fr2_OzSawlJD7OyxkJSTmmuU5LJZQWmaIZEmQokqwCkjxLMkApc82TmUpUrsp8XGkl12MxZCebu0trPjpyvljUTlPTqJZM5wouITyCFNOAHv9D56azIec3lQiO66dDNt5QIawLeqtiGSIp2xcIxVp7MQ3an2g1CdqLoL3YaA-LRz_nu3JBs7-1X8_iCx8LgYM</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Karimi, Bayan</creator><creator>Pekola, Jukka P</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0984-1829</orcidid><orcidid>https://orcid.org/0000-0003-4752-4277</orcidid></search><sort><creationdate>20200501</creationdate><title>Quantum Trajectory Analysis of Single Microwave Photon Detection by Nanocalorimetry</title><author>Karimi, Bayan ; Pekola, Jukka P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-9bde34e9179c7ba3ac38aed1e081358f0e4285801449c25da5a9ab96fca458f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Fluorescence</topic><topic>Photons</topic><topic>Qubits (quantum computing)</topic><topic>Trajectory analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karimi, Bayan</creatorcontrib><creatorcontrib>Pekola, Jukka P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karimi, Bayan</au><au>Pekola, Jukka P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Trajectory Analysis of Single Microwave Photon Detection by Nanocalorimetry</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>124</volume><issue>17</issue><spage>170601</spage><epage>170601</epage><pages>170601-170601</pages><artnum>170601</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We apply quantum trajectory techniques to analyze a realistic setup of a superconducting qubit coupled to a heat bath formed by a resistor, a system that yields explicit expressions of the relevant transition rates to be used in the analysis. We discuss the main characteristics of the jump trajectories and relate them to the expected outcomes ("clicks") of a fluorescence measurement using the resistor as a nanocalorimeter. As the main practical outcome, we present a model that predicts the time-domain response of a realistic calorimeter subject to single microwave photons, incorporating the intrinsic noise due to the fundamental thermal fluctuations of the absorber and finite bandwidth of a thermometer.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>32412284</pmid><doi>10.1103/physrevlett.124.170601</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0984-1829</orcidid><orcidid>https://orcid.org/0000-0003-4752-4277</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2020-05, Vol.124 (17), p.170601-170601, Article 170601 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_2404050717 |
source | American Physical Society Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Fluorescence Photons Qubits (quantum computing) Trajectory analysis |
title | Quantum Trajectory Analysis of Single Microwave Photon Detection by Nanocalorimetry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A04%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Trajectory%20Analysis%20of%20Single%20Microwave%20Photon%20Detection%20by%20Nanocalorimetry&rft.jtitle=Physical%20review%20letters&rft.au=Karimi,%20Bayan&rft.date=2020-05-01&rft.volume=124&rft.issue=17&rft.spage=170601&rft.epage=170601&rft.pages=170601-170601&rft.artnum=170601&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.124.170601&rft_dat=%3Cproquest_cross%3E2405321081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405321081&rft_id=info:pmid/32412284&rfr_iscdi=true |