Quantum Trajectory Analysis of Single Microwave Photon Detection by Nanocalorimetry

We apply quantum trajectory techniques to analyze a realistic setup of a superconducting qubit coupled to a heat bath formed by a resistor, a system that yields explicit expressions of the relevant transition rates to be used in the analysis. We discuss the main characteristics of the jump trajector...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2020-05, Vol.124 (17), p.170601-170601, Article 170601
Hauptverfasser: Karimi, Bayan, Pekola, Jukka P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 170601
container_issue 17
container_start_page 170601
container_title Physical review letters
container_volume 124
creator Karimi, Bayan
Pekola, Jukka P
description We apply quantum trajectory techniques to analyze a realistic setup of a superconducting qubit coupled to a heat bath formed by a resistor, a system that yields explicit expressions of the relevant transition rates to be used in the analysis. We discuss the main characteristics of the jump trajectories and relate them to the expected outcomes ("clicks") of a fluorescence measurement using the resistor as a nanocalorimeter. As the main practical outcome, we present a model that predicts the time-domain response of a realistic calorimeter subject to single microwave photons, incorporating the intrinsic noise due to the fundamental thermal fluctuations of the absorber and finite bandwidth of a thermometer.
doi_str_mv 10.1103/physrevlett.124.170601
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2404050717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2405321081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-9bde34e9179c7ba3ac38aed1e081358f0e4285801449c25da5a9ab96fca458f03</originalsourceid><addsrcrecordid>eNpdkE1PwzAMhiMEgjH4C6gSFy4ddpKu7RHxLQ0YX-cqzVzo1DUjSYf678kYcOBkS35s630YO0IYIYI4Xb73ztKqIe9HyOUIUxgDbrEBQprHKaLcZgMAgXEOkO6xfefmAIB8nO2yPcElcp7JAXt-7FTru0X0YtWctDe2j85a1fSudpGpoue6fWsouqu1NZ9qRdH03XjTRhfkA12Hruyje9UarRpj6wV52x-wnUo1jg5_6pC9Xl2-nN_Ek4fr2_OzSawlJD7OyxkJSTmmuU5LJZQWmaIZEmQokqwCkjxLMkApc82TmUpUrsp8XGkl12MxZCebu0trPjpyvljUTlPTqJZM5wouITyCFNOAHv9D56azIec3lQiO66dDNt5QIawLeqtiGSIp2xcIxVp7MQ3an2g1CdqLoL3YaA-LRz_nu3JBs7-1X8_iCx8LgYM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405321081</pqid></control><display><type>article</type><title>Quantum Trajectory Analysis of Single Microwave Photon Detection by Nanocalorimetry</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Karimi, Bayan ; Pekola, Jukka P</creator><creatorcontrib>Karimi, Bayan ; Pekola, Jukka P</creatorcontrib><description>We apply quantum trajectory techniques to analyze a realistic setup of a superconducting qubit coupled to a heat bath formed by a resistor, a system that yields explicit expressions of the relevant transition rates to be used in the analysis. We discuss the main characteristics of the jump trajectories and relate them to the expected outcomes ("clicks") of a fluorescence measurement using the resistor as a nanocalorimeter. As the main practical outcome, we present a model that predicts the time-domain response of a realistic calorimeter subject to single microwave photons, incorporating the intrinsic noise due to the fundamental thermal fluctuations of the absorber and finite bandwidth of a thermometer.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.124.170601</identifier><identifier>PMID: 32412284</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Fluorescence ; Photons ; Qubits (quantum computing) ; Trajectory analysis</subject><ispartof>Physical review letters, 2020-05, Vol.124 (17), p.170601-170601, Article 170601</ispartof><rights>Copyright American Physical Society May 1, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-9bde34e9179c7ba3ac38aed1e081358f0e4285801449c25da5a9ab96fca458f03</citedby><cites>FETCH-LOGICAL-c405t-9bde34e9179c7ba3ac38aed1e081358f0e4285801449c25da5a9ab96fca458f03</cites><orcidid>0000-0003-0984-1829 ; 0000-0003-4752-4277</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32412284$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Karimi, Bayan</creatorcontrib><creatorcontrib>Pekola, Jukka P</creatorcontrib><title>Quantum Trajectory Analysis of Single Microwave Photon Detection by Nanocalorimetry</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We apply quantum trajectory techniques to analyze a realistic setup of a superconducting qubit coupled to a heat bath formed by a resistor, a system that yields explicit expressions of the relevant transition rates to be used in the analysis. We discuss the main characteristics of the jump trajectories and relate them to the expected outcomes ("clicks") of a fluorescence measurement using the resistor as a nanocalorimeter. As the main practical outcome, we present a model that predicts the time-domain response of a realistic calorimeter subject to single microwave photons, incorporating the intrinsic noise due to the fundamental thermal fluctuations of the absorber and finite bandwidth of a thermometer.</description><subject>Fluorescence</subject><subject>Photons</subject><subject>Qubits (quantum computing)</subject><subject>Trajectory analysis</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkE1PwzAMhiMEgjH4C6gSFy4ddpKu7RHxLQ0YX-cqzVzo1DUjSYf678kYcOBkS35s630YO0IYIYI4Xb73ztKqIe9HyOUIUxgDbrEBQprHKaLcZgMAgXEOkO6xfefmAIB8nO2yPcElcp7JAXt-7FTru0X0YtWctDe2j85a1fSudpGpoue6fWsouqu1NZ9qRdH03XjTRhfkA12Hruyje9UarRpj6wV52x-wnUo1jg5_6pC9Xl2-nN_Ek4fr2_OzSawlJD7OyxkJSTmmuU5LJZQWmaIZEmQokqwCkjxLMkApc82TmUpUrsp8XGkl12MxZCebu0trPjpyvljUTlPTqJZM5wouITyCFNOAHv9D56azIec3lQiO66dDNt5QIawLeqtiGSIp2xcIxVp7MQ3an2g1CdqLoL3YaA-LRz_nu3JBs7-1X8_iCx8LgYM</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Karimi, Bayan</creator><creator>Pekola, Jukka P</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0984-1829</orcidid><orcidid>https://orcid.org/0000-0003-4752-4277</orcidid></search><sort><creationdate>20200501</creationdate><title>Quantum Trajectory Analysis of Single Microwave Photon Detection by Nanocalorimetry</title><author>Karimi, Bayan ; Pekola, Jukka P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-9bde34e9179c7ba3ac38aed1e081358f0e4285801449c25da5a9ab96fca458f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Fluorescence</topic><topic>Photons</topic><topic>Qubits (quantum computing)</topic><topic>Trajectory analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karimi, Bayan</creatorcontrib><creatorcontrib>Pekola, Jukka P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karimi, Bayan</au><au>Pekola, Jukka P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Trajectory Analysis of Single Microwave Photon Detection by Nanocalorimetry</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>124</volume><issue>17</issue><spage>170601</spage><epage>170601</epage><pages>170601-170601</pages><artnum>170601</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We apply quantum trajectory techniques to analyze a realistic setup of a superconducting qubit coupled to a heat bath formed by a resistor, a system that yields explicit expressions of the relevant transition rates to be used in the analysis. We discuss the main characteristics of the jump trajectories and relate them to the expected outcomes ("clicks") of a fluorescence measurement using the resistor as a nanocalorimeter. As the main practical outcome, we present a model that predicts the time-domain response of a realistic calorimeter subject to single microwave photons, incorporating the intrinsic noise due to the fundamental thermal fluctuations of the absorber and finite bandwidth of a thermometer.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>32412284</pmid><doi>10.1103/physrevlett.124.170601</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0984-1829</orcidid><orcidid>https://orcid.org/0000-0003-4752-4277</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2020-05, Vol.124 (17), p.170601-170601, Article 170601
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2404050717
source American Physical Society Journals; EZB-FREE-00999 freely available EZB journals
subjects Fluorescence
Photons
Qubits (quantum computing)
Trajectory analysis
title Quantum Trajectory Analysis of Single Microwave Photon Detection by Nanocalorimetry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A04%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Trajectory%20Analysis%20of%20Single%20Microwave%20Photon%20Detection%20by%20Nanocalorimetry&rft.jtitle=Physical%20review%20letters&rft.au=Karimi,%20Bayan&rft.date=2020-05-01&rft.volume=124&rft.issue=17&rft.spage=170601&rft.epage=170601&rft.pages=170601-170601&rft.artnum=170601&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.124.170601&rft_dat=%3Cproquest_cross%3E2405321081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405321081&rft_id=info:pmid/32412284&rfr_iscdi=true