Identification of Human Secretome and Membrane Proteome-Based Cancer Biomarkers Utilizing Bioinformatics

Cellular secreted proteins (secretome), together with cellular membrane proteins, collectively referred to as secretory and membrane proteins (SMPs) are a large potential source of biomarkers as they can be used to indicate cell types and conditions. SMPs have been shown to be ideal candidates for s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of membrane biology 2020-06, Vol.253 (3), p.257-270
Hauptverfasser: Rehman, Adeel ur, Olof Olsson, P., Khan, Naveed, Khan, Khalid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 270
container_issue 3
container_start_page 257
container_title The Journal of membrane biology
container_volume 253
creator Rehman, Adeel ur
Olof Olsson, P.
Khan, Naveed
Khan, Khalid
description Cellular secreted proteins (secretome), together with cellular membrane proteins, collectively referred to as secretory and membrane proteins (SMPs) are a large potential source of biomarkers as they can be used to indicate cell types and conditions. SMPs have been shown to be ideal candidates for several clinically approved drug regimens including for cancer. This study aimed at performing a functional analysis of SMPs within different cancer subtypes to provide great clinical targets for potential prognostic, diagnostic and the therapeutics use. Using an innovative majority decision-based algorithm and transcriptomic data spanning 5 cancer types and over 3000 samples, we quantified the relative difference in SMPs gene expression compared to normal adjacent tissue. A detailed deep data mining analysis revealed a consistent group of downregulated SMP isoforms, enriched in hematopoietic cell lineages (HCL), in multiple cancer types. HCL-associated genes were frequently downregulated in successive cancer stages and high expression was associated with good patient prognosis. In addition, we suggest a potential mechanism by which cancer cells suppress HCL signaling by reducing the expression of immune-related genes. Our data identified potential biomarkers for the cancer immunotherapy. We conclude that our approach may be applicable for the delineation of other types of cancer and illuminate specific targets for therapeutics and diagnostics.
doi_str_mv 10.1007/s00232-020-00122-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2404048218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2412227261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-d2858ae572416b16893a5650f5ed40721f7d6a782b1460ff33321ff674bdb4433</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhS0EopfCC7BAltiwCbXHf2FJrwqtVAQSdG05ybi43NjFThbl6TvlFpBYVF5YOvPN8XgOYy-leCuFcEdNCFDQCRCdEBKgM4_YRmqSpAb9mG2oDh1YJQ_Ys9auCHLO6qfsQIGWRvWwYd_PJsxLimkMSyqZl8hP1zlk_hXHikuZkYc88U84DzVk5F9qWZDU7jg0nPg25BErP05lDvUH1sYvlrRLv1K-vBNTjqXO5Dy25-xJDLuGL-7vQ3bx4eTb9rQ7__zxbPv-vBuVM0s3QW_6gMbRhHaQtn-ngrFGRIOTFg5kdJMNrodBaitiVEqRFq3TwzRordQhe7P3va7l54pt8XNqI-52NH1Zmwct6PQge0Jf_4delbVmmo4o2ic4sJIo2FNjLa1VjP66JvrtjZfC3-Xg9zl4ysH_zsEbanp1b70OM05_W_4sngC1BxqV8iXWf28_YHsLgXqRvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412227261</pqid></control><display><type>article</type><title>Identification of Human Secretome and Membrane Proteome-Based Cancer Biomarkers Utilizing Bioinformatics</title><source>SpringerNature Journals</source><creator>Rehman, Adeel ur ; Olof Olsson, P. ; Khan, Naveed ; Khan, Khalid</creator><creatorcontrib>Rehman, Adeel ur ; Olof Olsson, P. ; Khan, Naveed ; Khan, Khalid</creatorcontrib><description>Cellular secreted proteins (secretome), together with cellular membrane proteins, collectively referred to as secretory and membrane proteins (SMPs) are a large potential source of biomarkers as they can be used to indicate cell types and conditions. SMPs have been shown to be ideal candidates for several clinically approved drug regimens including for cancer. This study aimed at performing a functional analysis of SMPs within different cancer subtypes to provide great clinical targets for potential prognostic, diagnostic and the therapeutics use. Using an innovative majority decision-based algorithm and transcriptomic data spanning 5 cancer types and over 3000 samples, we quantified the relative difference in SMPs gene expression compared to normal adjacent tissue. A detailed deep data mining analysis revealed a consistent group of downregulated SMP isoforms, enriched in hematopoietic cell lineages (HCL), in multiple cancer types. HCL-associated genes were frequently downregulated in successive cancer stages and high expression was associated with good patient prognosis. In addition, we suggest a potential mechanism by which cancer cells suppress HCL signaling by reducing the expression of immune-related genes. Our data identified potential biomarkers for the cancer immunotherapy. We conclude that our approach may be applicable for the delineation of other types of cancer and illuminate specific targets for therapeutics and diagnostics.</description><identifier>ISSN: 0022-2631</identifier><identifier>EISSN: 1432-1424</identifier><identifier>DOI: 10.1007/s00232-020-00122-5</identifier><identifier>PMID: 32415382</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Biochemistry ; Bioinformatics ; Biomarkers ; Biomedical and Life Sciences ; Cancer ; Cancer immunotherapy ; Cell membranes ; Data mining ; Diagnostic systems ; Functional analysis ; Gene expression ; Genes ; Human Physiology ; Immunotherapy ; Isoforms ; Life Sciences ; Membrane proteins ; Proteins ; Proteomes ; Secretome</subject><ispartof>The Journal of membrane biology, 2020-06, Vol.253 (3), p.257-270</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-d2858ae572416b16893a5650f5ed40721f7d6a782b1460ff33321ff674bdb4433</citedby><cites>FETCH-LOGICAL-c375t-d2858ae572416b16893a5650f5ed40721f7d6a782b1460ff33321ff674bdb4433</cites><orcidid>0000-0002-4800-5762</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00232-020-00122-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00232-020-00122-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32415382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rehman, Adeel ur</creatorcontrib><creatorcontrib>Olof Olsson, P.</creatorcontrib><creatorcontrib>Khan, Naveed</creatorcontrib><creatorcontrib>Khan, Khalid</creatorcontrib><title>Identification of Human Secretome and Membrane Proteome-Based Cancer Biomarkers Utilizing Bioinformatics</title><title>The Journal of membrane biology</title><addtitle>J Membrane Biol</addtitle><addtitle>J Membr Biol</addtitle><description>Cellular secreted proteins (secretome), together with cellular membrane proteins, collectively referred to as secretory and membrane proteins (SMPs) are a large potential source of biomarkers as they can be used to indicate cell types and conditions. SMPs have been shown to be ideal candidates for several clinically approved drug regimens including for cancer. This study aimed at performing a functional analysis of SMPs within different cancer subtypes to provide great clinical targets for potential prognostic, diagnostic and the therapeutics use. Using an innovative majority decision-based algorithm and transcriptomic data spanning 5 cancer types and over 3000 samples, we quantified the relative difference in SMPs gene expression compared to normal adjacent tissue. A detailed deep data mining analysis revealed a consistent group of downregulated SMP isoforms, enriched in hematopoietic cell lineages (HCL), in multiple cancer types. HCL-associated genes were frequently downregulated in successive cancer stages and high expression was associated with good patient prognosis. In addition, we suggest a potential mechanism by which cancer cells suppress HCL signaling by reducing the expression of immune-related genes. Our data identified potential biomarkers for the cancer immunotherapy. We conclude that our approach may be applicable for the delineation of other types of cancer and illuminate specific targets for therapeutics and diagnostics.</description><subject>Algorithms</subject><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Biomarkers</subject><subject>Biomedical and Life Sciences</subject><subject>Cancer</subject><subject>Cancer immunotherapy</subject><subject>Cell membranes</subject><subject>Data mining</subject><subject>Diagnostic systems</subject><subject>Functional analysis</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Human Physiology</subject><subject>Immunotherapy</subject><subject>Isoforms</subject><subject>Life Sciences</subject><subject>Membrane proteins</subject><subject>Proteins</subject><subject>Proteomes</subject><subject>Secretome</subject><issn>0022-2631</issn><issn>1432-1424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1u1TAQhS0EopfCC7BAltiwCbXHf2FJrwqtVAQSdG05ybi43NjFThbl6TvlFpBYVF5YOvPN8XgOYy-leCuFcEdNCFDQCRCdEBKgM4_YRmqSpAb9mG2oDh1YJQ_Ys9auCHLO6qfsQIGWRvWwYd_PJsxLimkMSyqZl8hP1zlk_hXHikuZkYc88U84DzVk5F9qWZDU7jg0nPg25BErP05lDvUH1sYvlrRLv1K-vBNTjqXO5Dy25-xJDLuGL-7vQ3bx4eTb9rQ7__zxbPv-vBuVM0s3QW_6gMbRhHaQtn-ngrFGRIOTFg5kdJMNrodBaitiVEqRFq3TwzRordQhe7P3va7l54pt8XNqI-52NH1Zmwct6PQge0Jf_4delbVmmo4o2ic4sJIo2FNjLa1VjP66JvrtjZfC3-Xg9zl4ysH_zsEbanp1b70OM05_W_4sngC1BxqV8iXWf28_YHsLgXqRvA</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Rehman, Adeel ur</creator><creator>Olof Olsson, P.</creator><creator>Khan, Naveed</creator><creator>Khan, Khalid</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4800-5762</orcidid></search><sort><creationdate>20200601</creationdate><title>Identification of Human Secretome and Membrane Proteome-Based Cancer Biomarkers Utilizing Bioinformatics</title><author>Rehman, Adeel ur ; Olof Olsson, P. ; Khan, Naveed ; Khan, Khalid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-d2858ae572416b16893a5650f5ed40721f7d6a782b1460ff33321ff674bdb4433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Biomarkers</topic><topic>Biomedical and Life Sciences</topic><topic>Cancer</topic><topic>Cancer immunotherapy</topic><topic>Cell membranes</topic><topic>Data mining</topic><topic>Diagnostic systems</topic><topic>Functional analysis</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Human Physiology</topic><topic>Immunotherapy</topic><topic>Isoforms</topic><topic>Life Sciences</topic><topic>Membrane proteins</topic><topic>Proteins</topic><topic>Proteomes</topic><topic>Secretome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rehman, Adeel ur</creatorcontrib><creatorcontrib>Olof Olsson, P.</creatorcontrib><creatorcontrib>Khan, Naveed</creatorcontrib><creatorcontrib>Khan, Khalid</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of membrane biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rehman, Adeel ur</au><au>Olof Olsson, P.</au><au>Khan, Naveed</au><au>Khan, Khalid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Human Secretome and Membrane Proteome-Based Cancer Biomarkers Utilizing Bioinformatics</atitle><jtitle>The Journal of membrane biology</jtitle><stitle>J Membrane Biol</stitle><addtitle>J Membr Biol</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>253</volume><issue>3</issue><spage>257</spage><epage>270</epage><pages>257-270</pages><issn>0022-2631</issn><eissn>1432-1424</eissn><abstract>Cellular secreted proteins (secretome), together with cellular membrane proteins, collectively referred to as secretory and membrane proteins (SMPs) are a large potential source of biomarkers as they can be used to indicate cell types and conditions. SMPs have been shown to be ideal candidates for several clinically approved drug regimens including for cancer. This study aimed at performing a functional analysis of SMPs within different cancer subtypes to provide great clinical targets for potential prognostic, diagnostic and the therapeutics use. Using an innovative majority decision-based algorithm and transcriptomic data spanning 5 cancer types and over 3000 samples, we quantified the relative difference in SMPs gene expression compared to normal adjacent tissue. A detailed deep data mining analysis revealed a consistent group of downregulated SMP isoforms, enriched in hematopoietic cell lineages (HCL), in multiple cancer types. HCL-associated genes were frequently downregulated in successive cancer stages and high expression was associated with good patient prognosis. In addition, we suggest a potential mechanism by which cancer cells suppress HCL signaling by reducing the expression of immune-related genes. Our data identified potential biomarkers for the cancer immunotherapy. We conclude that our approach may be applicable for the delineation of other types of cancer and illuminate specific targets for therapeutics and diagnostics.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>32415382</pmid><doi>10.1007/s00232-020-00122-5</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4800-5762</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2631
ispartof The Journal of membrane biology, 2020-06, Vol.253 (3), p.257-270
issn 0022-2631
1432-1424
language eng
recordid cdi_proquest_miscellaneous_2404048218
source SpringerNature Journals
subjects Algorithms
Biochemistry
Bioinformatics
Biomarkers
Biomedical and Life Sciences
Cancer
Cancer immunotherapy
Cell membranes
Data mining
Diagnostic systems
Functional analysis
Gene expression
Genes
Human Physiology
Immunotherapy
Isoforms
Life Sciences
Membrane proteins
Proteins
Proteomes
Secretome
title Identification of Human Secretome and Membrane Proteome-Based Cancer Biomarkers Utilizing Bioinformatics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A57%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Human%20Secretome%20and%20Membrane%20Proteome-Based%20Cancer%20Biomarkers%20Utilizing%20Bioinformatics&rft.jtitle=The%20Journal%20of%20membrane%20biology&rft.au=Rehman,%20Adeel%20ur&rft.date=2020-06-01&rft.volume=253&rft.issue=3&rft.spage=257&rft.epage=270&rft.pages=257-270&rft.issn=0022-2631&rft.eissn=1432-1424&rft_id=info:doi/10.1007/s00232-020-00122-5&rft_dat=%3Cproquest_cross%3E2412227261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412227261&rft_id=info:pmid/32415382&rfr_iscdi=true