Re-visiting the Frank-Starling nexus

Well over a century ago, Otto Frank, working at Carl Ludwig’s Institute of Physiology in Munich, studying the isolated, blood-perfused, frog heart preparation, demonstrated that there are two distinct pressure-volume relations in the heart: one for isovolumic twitches and a second (located inferiorl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in biophysics and molecular biology 2021-01, Vol.159, p.10-21
Hauptverfasser: Han, June-Chiew, Loiselle, Denis, Taberner, Andrew, Tran, Kenneth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Well over a century ago, Otto Frank, working at Carl Ludwig’s Institute of Physiology in Munich, studying the isolated, blood-perfused, frog heart preparation, demonstrated that there are two distinct pressure-volume relations in the heart: one for isovolumic twitches and a second (located inferiorly) for afterloaded twitches. Whereas Starling, working at UCL two decades later, referenced Frank’s publication (to the extent of re-printing its seminal Figure), he appeared not to have tested Frank’s finding. Hence, he remained silent with respect to Franks’ contention that cardiac pressure-volume relations are contraction-mode-dependent. Instead, he concluded that “The energy of contraction, however measured, is a function of the length of the muscle fibre” - a conclusion that has become known (at least in the English-speaking world) as ‘Starling’s Law of the Heart’. This provides us with at least three conundra: (i) why did Starling present only one pressure-volume relation whereas Frank had previously found two, (ii) why, then, do we speak of The Frank-Starling relation, and (iii) how did Frank become largely forgotten for twelve decades among English speakers? This review will attempt to address and comment on these conundra.
ISSN:0079-6107
1873-1732
DOI:10.1016/j.pbiomolbio.2020.04.003