Protein-based polyelectrolyte multilayers

The immobilization of proteins to impart specific functions to surfaces is topical for chemical engineering, healthcare and diagnosis. Layer-by-Layer (LbL) self-assembly is one of the most used method to immobilize macromolecules on surfaces. It consists in the alternate adsorption of oppositely cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in colloid and interface science 2020-06, Vol.280, p.102161-102161, Article 102161
Hauptverfasser: vander Straeten, Aurélien, Lefèvre, Damien, Demoustier-Champagne, Sophie, Dupont-Gillain, Christine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102161
container_issue
container_start_page 102161
container_title Advances in colloid and interface science
container_volume 280
creator vander Straeten, Aurélien
Lefèvre, Damien
Demoustier-Champagne, Sophie
Dupont-Gillain, Christine
description The immobilization of proteins to impart specific functions to surfaces is topical for chemical engineering, healthcare and diagnosis. Layer-by-Layer (LbL) self-assembly is one of the most used method to immobilize macromolecules on surfaces. It consists in the alternate adsorption of oppositely charged species, resulting in the formation of a multilayer. This method in principle allows any charged object to be immobilized on any surface, from aqueous solutions. However, when it comes to proteins, the promises of versatility, simplicity and universality that the LbL approach holds are unmet due to the heterogeneity of protein properties. In this review, the literature is analyzed to make a generic approach emerge, with a view to facilitate the LbL assembly of proteins with polyelectrolytes (PEs). In particular, this review aims at guiding the choice of the PE and the building conditions that lead to the successful growth of protein-based multilayered self-assemblies. [Display omitted] •This review formalizes three generic approaches that facilitate the use of the LbL method for protein immobilization.•Find a protein structural analog that was already successfully immobilized in our database.•Predict the conditions that are necessary to grow a film based on the mechanisms of protein-PE LbL assembly.•Use unconventional LbL assemblies
doi_str_mv 10.1016/j.cis.2020.102161
format Article
fullrecord <record><control><sourceid>proquest_elsev</sourceid><recordid>TN_cdi_proquest_miscellaneous_2404045016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000186861930452X</els_id><sourcerecordid>2404045016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-5eefe410910dbf082daf459710cb353cfe9992ce114994be10659da57b71c0943</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhoMo7rr6A7yIR0W6ZtKmafAkxS9Y0IOeQ5tOIUu3WZNU2X9vlq57FMkhM_C8A_MMIedA50Ahv13OtfFzRtm2Z5DDAZlCIdIkFUwckimlFJIiL_IJOfF-GVvGBT8mk5RlkPMMpuT6zdmApk_qymNzubbdBjvUwcUi4OVq6ILpqg06f0qO2qrzeLb7Z-Tj8eG9fE4Wr08v5f0i0SlPQ8IRW8yASqBN3dKCNVWbcSmA6joCukUpJdMIkEmZ1Qg057KpuKgFaCqzdEauxrlrZz8H9EGtjNfYdVWPdvCKZTQ-HvePKIyodtZ7h61aO7Oq3EYBVVtDaqmiIbU1pEZDMXOxGz_UK2z2iV8lEShG4Btr23ptsNe4x6JDnha5pCJWNC1NqIKxfWmHPsTozf-jkb4baYw2vww6tUs0xsULqMaaP_b4AdtJlbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404045016</pqid></control><display><type>article</type><title>Protein-based polyelectrolyte multilayers</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>vander Straeten, Aurélien ; Lefèvre, Damien ; Demoustier-Champagne, Sophie ; Dupont-Gillain, Christine</creator><creatorcontrib>vander Straeten, Aurélien ; Lefèvre, Damien ; Demoustier-Champagne, Sophie ; Dupont-Gillain, Christine</creatorcontrib><description>The immobilization of proteins to impart specific functions to surfaces is topical for chemical engineering, healthcare and diagnosis. Layer-by-Layer (LbL) self-assembly is one of the most used method to immobilize macromolecules on surfaces. It consists in the alternate adsorption of oppositely charged species, resulting in the formation of a multilayer. This method in principle allows any charged object to be immobilized on any surface, from aqueous solutions. However, when it comes to proteins, the promises of versatility, simplicity and universality that the LbL approach holds are unmet due to the heterogeneity of protein properties. In this review, the literature is analyzed to make a generic approach emerge, with a view to facilitate the LbL assembly of proteins with polyelectrolytes (PEs). In particular, this review aims at guiding the choice of the PE and the building conditions that lead to the successful growth of protein-based multilayered self-assemblies. [Display omitted] •This review formalizes three generic approaches that facilitate the use of the LbL method for protein immobilization.•Find a protein structural analog that was already successfully immobilized in our database.•Predict the conditions that are necessary to grow a film based on the mechanisms of protein-PE LbL assembly.•Use unconventional LbL assemblies</description><identifier>ISSN: 0001-8686</identifier><identifier>EISSN: 1873-3727</identifier><identifier>DOI: 10.1016/j.cis.2020.102161</identifier><identifier>PMID: 32416541</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier B.V</publisher><subject>Biomaterial ; Biosensing ; Chemistry ; Chemistry, Physical ; Drug delivery ; Hydrogen-Ion Concentration ; Layer-by-layer ; Multilayer ; Physical Sciences ; Polyelectrolyte ; Polyelectrolytes - chemistry ; Protein ; Proteins - chemistry ; Proteins - metabolism ; Science &amp; Technology ; Solutions ; Temperature</subject><ispartof>Advances in colloid and interface science, 2020-06, Vol.280, p.102161-102161, Article 102161</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright © 2020 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>37</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000538690700003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c353t-5eefe410910dbf082daf459710cb353cfe9992ce114994be10659da57b71c0943</citedby><cites>FETCH-LOGICAL-c353t-5eefe410910dbf082daf459710cb353cfe9992ce114994be10659da57b71c0943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cis.2020.102161$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32416541$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>vander Straeten, Aurélien</creatorcontrib><creatorcontrib>Lefèvre, Damien</creatorcontrib><creatorcontrib>Demoustier-Champagne, Sophie</creatorcontrib><creatorcontrib>Dupont-Gillain, Christine</creatorcontrib><title>Protein-based polyelectrolyte multilayers</title><title>Advances in colloid and interface science</title><addtitle>ADV COLLOID INTERFAC</addtitle><addtitle>Adv Colloid Interface Sci</addtitle><description>The immobilization of proteins to impart specific functions to surfaces is topical for chemical engineering, healthcare and diagnosis. Layer-by-Layer (LbL) self-assembly is one of the most used method to immobilize macromolecules on surfaces. It consists in the alternate adsorption of oppositely charged species, resulting in the formation of a multilayer. This method in principle allows any charged object to be immobilized on any surface, from aqueous solutions. However, when it comes to proteins, the promises of versatility, simplicity and universality that the LbL approach holds are unmet due to the heterogeneity of protein properties. In this review, the literature is analyzed to make a generic approach emerge, with a view to facilitate the LbL assembly of proteins with polyelectrolytes (PEs). In particular, this review aims at guiding the choice of the PE and the building conditions that lead to the successful growth of protein-based multilayered self-assemblies. [Display omitted] •This review formalizes three generic approaches that facilitate the use of the LbL method for protein immobilization.•Find a protein structural analog that was already successfully immobilized in our database.•Predict the conditions that are necessary to grow a film based on the mechanisms of protein-PE LbL assembly.•Use unconventional LbL assemblies</description><subject>Biomaterial</subject><subject>Biosensing</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Drug delivery</subject><subject>Hydrogen-Ion Concentration</subject><subject>Layer-by-layer</subject><subject>Multilayer</subject><subject>Physical Sciences</subject><subject>Polyelectrolyte</subject><subject>Polyelectrolytes - chemistry</subject><subject>Protein</subject><subject>Proteins - chemistry</subject><subject>Proteins - metabolism</subject><subject>Science &amp; Technology</subject><subject>Solutions</subject><subject>Temperature</subject><issn>0001-8686</issn><issn>1873-3727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU1LxDAQhoMo7rr6A7yIR0W6ZtKmafAkxS9Y0IOeQ5tOIUu3WZNU2X9vlq57FMkhM_C8A_MMIedA50Ahv13OtfFzRtm2Z5DDAZlCIdIkFUwckimlFJIiL_IJOfF-GVvGBT8mk5RlkPMMpuT6zdmApk_qymNzubbdBjvUwcUi4OVq6ILpqg06f0qO2qrzeLb7Z-Tj8eG9fE4Wr08v5f0i0SlPQ8IRW8yASqBN3dKCNVWbcSmA6joCukUpJdMIkEmZ1Qg057KpuKgFaCqzdEauxrlrZz8H9EGtjNfYdVWPdvCKZTQ-HvePKIyodtZ7h61aO7Oq3EYBVVtDaqmiIbU1pEZDMXOxGz_UK2z2iV8lEShG4Btr23ptsNe4x6JDnha5pCJWNC1NqIKxfWmHPsTozf-jkb4baYw2vww6tUs0xsULqMaaP_b4AdtJlbA</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>vander Straeten, Aurélien</creator><creator>Lefèvre, Damien</creator><creator>Demoustier-Champagne, Sophie</creator><creator>Dupont-Gillain, Christine</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202006</creationdate><title>Protein-based polyelectrolyte multilayers</title><author>vander Straeten, Aurélien ; Lefèvre, Damien ; Demoustier-Champagne, Sophie ; Dupont-Gillain, Christine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-5eefe410910dbf082daf459710cb353cfe9992ce114994be10659da57b71c0943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomaterial</topic><topic>Biosensing</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Drug delivery</topic><topic>Hydrogen-Ion Concentration</topic><topic>Layer-by-layer</topic><topic>Multilayer</topic><topic>Physical Sciences</topic><topic>Polyelectrolyte</topic><topic>Polyelectrolytes - chemistry</topic><topic>Protein</topic><topic>Proteins - chemistry</topic><topic>Proteins - metabolism</topic><topic>Science &amp; Technology</topic><topic>Solutions</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>vander Straeten, Aurélien</creatorcontrib><creatorcontrib>Lefèvre, Damien</creatorcontrib><creatorcontrib>Demoustier-Champagne, Sophie</creatorcontrib><creatorcontrib>Dupont-Gillain, Christine</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Advances in colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>vander Straeten, Aurélien</au><au>Lefèvre, Damien</au><au>Demoustier-Champagne, Sophie</au><au>Dupont-Gillain, Christine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein-based polyelectrolyte multilayers</atitle><jtitle>Advances in colloid and interface science</jtitle><stitle>ADV COLLOID INTERFAC</stitle><addtitle>Adv Colloid Interface Sci</addtitle><date>2020-06</date><risdate>2020</risdate><volume>280</volume><spage>102161</spage><epage>102161</epage><pages>102161-102161</pages><artnum>102161</artnum><issn>0001-8686</issn><eissn>1873-3727</eissn><abstract>The immobilization of proteins to impart specific functions to surfaces is topical for chemical engineering, healthcare and diagnosis. Layer-by-Layer (LbL) self-assembly is one of the most used method to immobilize macromolecules on surfaces. It consists in the alternate adsorption of oppositely charged species, resulting in the formation of a multilayer. This method in principle allows any charged object to be immobilized on any surface, from aqueous solutions. However, when it comes to proteins, the promises of versatility, simplicity and universality that the LbL approach holds are unmet due to the heterogeneity of protein properties. In this review, the literature is analyzed to make a generic approach emerge, with a view to facilitate the LbL assembly of proteins with polyelectrolytes (PEs). In particular, this review aims at guiding the choice of the PE and the building conditions that lead to the successful growth of protein-based multilayered self-assemblies. [Display omitted] •This review formalizes three generic approaches that facilitate the use of the LbL method for protein immobilization.•Find a protein structural analog that was already successfully immobilized in our database.•Predict the conditions that are necessary to grow a film based on the mechanisms of protein-PE LbL assembly.•Use unconventional LbL assemblies</abstract><cop>AMSTERDAM</cop><pub>Elsevier B.V</pub><pmid>32416541</pmid><doi>10.1016/j.cis.2020.102161</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-8686
ispartof Advances in colloid and interface science, 2020-06, Vol.280, p.102161-102161, Article 102161
issn 0001-8686
1873-3727
language eng
recordid cdi_proquest_miscellaneous_2404045016
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Biomaterial
Biosensing
Chemistry
Chemistry, Physical
Drug delivery
Hydrogen-Ion Concentration
Layer-by-layer
Multilayer
Physical Sciences
Polyelectrolyte
Polyelectrolytes - chemistry
Protein
Proteins - chemistry
Proteins - metabolism
Science & Technology
Solutions
Temperature
title Protein-based polyelectrolyte multilayers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A49%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein-based%20polyelectrolyte%20multilayers&rft.jtitle=Advances%20in%20colloid%20and%20interface%20science&rft.au=vander%20Straeten,%20Aur%C3%A9lien&rft.date=2020-06&rft.volume=280&rft.spage=102161&rft.epage=102161&rft.pages=102161-102161&rft.artnum=102161&rft.issn=0001-8686&rft.eissn=1873-3727&rft_id=info:doi/10.1016/j.cis.2020.102161&rft_dat=%3Cproquest_elsev%3E2404045016%3C/proquest_elsev%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404045016&rft_id=info:pmid/32416541&rft_els_id=S000186861930452X&rfr_iscdi=true