Protein-based polyelectrolyte multilayers
The immobilization of proteins to impart specific functions to surfaces is topical for chemical engineering, healthcare and diagnosis. Layer-by-Layer (LbL) self-assembly is one of the most used method to immobilize macromolecules on surfaces. It consists in the alternate adsorption of oppositely cha...
Gespeichert in:
Veröffentlicht in: | Advances in colloid and interface science 2020-06, Vol.280, p.102161-102161, Article 102161 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 102161 |
---|---|
container_issue | |
container_start_page | 102161 |
container_title | Advances in colloid and interface science |
container_volume | 280 |
creator | vander Straeten, Aurélien Lefèvre, Damien Demoustier-Champagne, Sophie Dupont-Gillain, Christine |
description | The immobilization of proteins to impart specific functions to surfaces is topical for chemical engineering, healthcare and diagnosis. Layer-by-Layer (LbL) self-assembly is one of the most used method to immobilize macromolecules on surfaces. It consists in the alternate adsorption of oppositely charged species, resulting in the formation of a multilayer. This method in principle allows any charged object to be immobilized on any surface, from aqueous solutions. However, when it comes to proteins, the promises of versatility, simplicity and universality that the LbL approach holds are unmet due to the heterogeneity of protein properties. In this review, the literature is analyzed to make a generic approach emerge, with a view to facilitate the LbL assembly of proteins with polyelectrolytes (PEs). In particular, this review aims at guiding the choice of the PE and the building conditions that lead to the successful growth of protein-based multilayered self-assemblies.
[Display omitted]
•This review formalizes three generic approaches that facilitate the use of the LbL method for protein immobilization.•Find a protein structural analog that was already successfully immobilized in our database.•Predict the conditions that are necessary to grow a film based on the mechanisms of protein-PE LbL assembly.•Use unconventional LbL assemblies |
doi_str_mv | 10.1016/j.cis.2020.102161 |
format | Article |
fullrecord | <record><control><sourceid>proquest_elsev</sourceid><recordid>TN_cdi_proquest_miscellaneous_2404045016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000186861930452X</els_id><sourcerecordid>2404045016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-5eefe410910dbf082daf459710cb353cfe9992ce114994be10659da57b71c0943</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhoMo7rr6A7yIR0W6ZtKmafAkxS9Y0IOeQ5tOIUu3WZNU2X9vlq57FMkhM_C8A_MMIedA50Ahv13OtfFzRtm2Z5DDAZlCIdIkFUwckimlFJIiL_IJOfF-GVvGBT8mk5RlkPMMpuT6zdmApk_qymNzubbdBjvUwcUi4OVq6ILpqg06f0qO2qrzeLb7Z-Tj8eG9fE4Wr08v5f0i0SlPQ8IRW8yASqBN3dKCNVWbcSmA6joCukUpJdMIkEmZ1Qg057KpuKgFaCqzdEauxrlrZz8H9EGtjNfYdVWPdvCKZTQ-HvePKIyodtZ7h61aO7Oq3EYBVVtDaqmiIbU1pEZDMXOxGz_UK2z2iV8lEShG4Btr23ptsNe4x6JDnha5pCJWNC1NqIKxfWmHPsTozf-jkb4baYw2vww6tUs0xsULqMaaP_b4AdtJlbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404045016</pqid></control><display><type>article</type><title>Protein-based polyelectrolyte multilayers</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>vander Straeten, Aurélien ; Lefèvre, Damien ; Demoustier-Champagne, Sophie ; Dupont-Gillain, Christine</creator><creatorcontrib>vander Straeten, Aurélien ; Lefèvre, Damien ; Demoustier-Champagne, Sophie ; Dupont-Gillain, Christine</creatorcontrib><description>The immobilization of proteins to impart specific functions to surfaces is topical for chemical engineering, healthcare and diagnosis. Layer-by-Layer (LbL) self-assembly is one of the most used method to immobilize macromolecules on surfaces. It consists in the alternate adsorption of oppositely charged species, resulting in the formation of a multilayer. This method in principle allows any charged object to be immobilized on any surface, from aqueous solutions. However, when it comes to proteins, the promises of versatility, simplicity and universality that the LbL approach holds are unmet due to the heterogeneity of protein properties. In this review, the literature is analyzed to make a generic approach emerge, with a view to facilitate the LbL assembly of proteins with polyelectrolytes (PEs). In particular, this review aims at guiding the choice of the PE and the building conditions that lead to the successful growth of protein-based multilayered self-assemblies.
[Display omitted]
•This review formalizes three generic approaches that facilitate the use of the LbL method for protein immobilization.•Find a protein structural analog that was already successfully immobilized in our database.•Predict the conditions that are necessary to grow a film based on the mechanisms of protein-PE LbL assembly.•Use unconventional LbL assemblies</description><identifier>ISSN: 0001-8686</identifier><identifier>EISSN: 1873-3727</identifier><identifier>DOI: 10.1016/j.cis.2020.102161</identifier><identifier>PMID: 32416541</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier B.V</publisher><subject>Biomaterial ; Biosensing ; Chemistry ; Chemistry, Physical ; Drug delivery ; Hydrogen-Ion Concentration ; Layer-by-layer ; Multilayer ; Physical Sciences ; Polyelectrolyte ; Polyelectrolytes - chemistry ; Protein ; Proteins - chemistry ; Proteins - metabolism ; Science & Technology ; Solutions ; Temperature</subject><ispartof>Advances in colloid and interface science, 2020-06, Vol.280, p.102161-102161, Article 102161</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright © 2020 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>37</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000538690700003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c353t-5eefe410910dbf082daf459710cb353cfe9992ce114994be10659da57b71c0943</citedby><cites>FETCH-LOGICAL-c353t-5eefe410910dbf082daf459710cb353cfe9992ce114994be10659da57b71c0943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cis.2020.102161$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32416541$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>vander Straeten, Aurélien</creatorcontrib><creatorcontrib>Lefèvre, Damien</creatorcontrib><creatorcontrib>Demoustier-Champagne, Sophie</creatorcontrib><creatorcontrib>Dupont-Gillain, Christine</creatorcontrib><title>Protein-based polyelectrolyte multilayers</title><title>Advances in colloid and interface science</title><addtitle>ADV COLLOID INTERFAC</addtitle><addtitle>Adv Colloid Interface Sci</addtitle><description>The immobilization of proteins to impart specific functions to surfaces is topical for chemical engineering, healthcare and diagnosis. Layer-by-Layer (LbL) self-assembly is one of the most used method to immobilize macromolecules on surfaces. It consists in the alternate adsorption of oppositely charged species, resulting in the formation of a multilayer. This method in principle allows any charged object to be immobilized on any surface, from aqueous solutions. However, when it comes to proteins, the promises of versatility, simplicity and universality that the LbL approach holds are unmet due to the heterogeneity of protein properties. In this review, the literature is analyzed to make a generic approach emerge, with a view to facilitate the LbL assembly of proteins with polyelectrolytes (PEs). In particular, this review aims at guiding the choice of the PE and the building conditions that lead to the successful growth of protein-based multilayered self-assemblies.
[Display omitted]
•This review formalizes three generic approaches that facilitate the use of the LbL method for protein immobilization.•Find a protein structural analog that was already successfully immobilized in our database.•Predict the conditions that are necessary to grow a film based on the mechanisms of protein-PE LbL assembly.•Use unconventional LbL assemblies</description><subject>Biomaterial</subject><subject>Biosensing</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Drug delivery</subject><subject>Hydrogen-Ion Concentration</subject><subject>Layer-by-layer</subject><subject>Multilayer</subject><subject>Physical Sciences</subject><subject>Polyelectrolyte</subject><subject>Polyelectrolytes - chemistry</subject><subject>Protein</subject><subject>Proteins - chemistry</subject><subject>Proteins - metabolism</subject><subject>Science & Technology</subject><subject>Solutions</subject><subject>Temperature</subject><issn>0001-8686</issn><issn>1873-3727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU1LxDAQhoMo7rr6A7yIR0W6ZtKmafAkxS9Y0IOeQ5tOIUu3WZNU2X9vlq57FMkhM_C8A_MMIedA50Ahv13OtfFzRtm2Z5DDAZlCIdIkFUwckimlFJIiL_IJOfF-GVvGBT8mk5RlkPMMpuT6zdmApk_qymNzubbdBjvUwcUi4OVq6ILpqg06f0qO2qrzeLb7Z-Tj8eG9fE4Wr08v5f0i0SlPQ8IRW8yASqBN3dKCNVWbcSmA6joCukUpJdMIkEmZ1Qg057KpuKgFaCqzdEauxrlrZz8H9EGtjNfYdVWPdvCKZTQ-HvePKIyodtZ7h61aO7Oq3EYBVVtDaqmiIbU1pEZDMXOxGz_UK2z2iV8lEShG4Btr23ptsNe4x6JDnha5pCJWNC1NqIKxfWmHPsTozf-jkb4baYw2vww6tUs0xsULqMaaP_b4AdtJlbA</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>vander Straeten, Aurélien</creator><creator>Lefèvre, Damien</creator><creator>Demoustier-Champagne, Sophie</creator><creator>Dupont-Gillain, Christine</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202006</creationdate><title>Protein-based polyelectrolyte multilayers</title><author>vander Straeten, Aurélien ; Lefèvre, Damien ; Demoustier-Champagne, Sophie ; Dupont-Gillain, Christine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-5eefe410910dbf082daf459710cb353cfe9992ce114994be10659da57b71c0943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomaterial</topic><topic>Biosensing</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Drug delivery</topic><topic>Hydrogen-Ion Concentration</topic><topic>Layer-by-layer</topic><topic>Multilayer</topic><topic>Physical Sciences</topic><topic>Polyelectrolyte</topic><topic>Polyelectrolytes - chemistry</topic><topic>Protein</topic><topic>Proteins - chemistry</topic><topic>Proteins - metabolism</topic><topic>Science & Technology</topic><topic>Solutions</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>vander Straeten, Aurélien</creatorcontrib><creatorcontrib>Lefèvre, Damien</creatorcontrib><creatorcontrib>Demoustier-Champagne, Sophie</creatorcontrib><creatorcontrib>Dupont-Gillain, Christine</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Advances in colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>vander Straeten, Aurélien</au><au>Lefèvre, Damien</au><au>Demoustier-Champagne, Sophie</au><au>Dupont-Gillain, Christine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein-based polyelectrolyte multilayers</atitle><jtitle>Advances in colloid and interface science</jtitle><stitle>ADV COLLOID INTERFAC</stitle><addtitle>Adv Colloid Interface Sci</addtitle><date>2020-06</date><risdate>2020</risdate><volume>280</volume><spage>102161</spage><epage>102161</epage><pages>102161-102161</pages><artnum>102161</artnum><issn>0001-8686</issn><eissn>1873-3727</eissn><abstract>The immobilization of proteins to impart specific functions to surfaces is topical for chemical engineering, healthcare and diagnosis. Layer-by-Layer (LbL) self-assembly is one of the most used method to immobilize macromolecules on surfaces. It consists in the alternate adsorption of oppositely charged species, resulting in the formation of a multilayer. This method in principle allows any charged object to be immobilized on any surface, from aqueous solutions. However, when it comes to proteins, the promises of versatility, simplicity and universality that the LbL approach holds are unmet due to the heterogeneity of protein properties. In this review, the literature is analyzed to make a generic approach emerge, with a view to facilitate the LbL assembly of proteins with polyelectrolytes (PEs). In particular, this review aims at guiding the choice of the PE and the building conditions that lead to the successful growth of protein-based multilayered self-assemblies.
[Display omitted]
•This review formalizes three generic approaches that facilitate the use of the LbL method for protein immobilization.•Find a protein structural analog that was already successfully immobilized in our database.•Predict the conditions that are necessary to grow a film based on the mechanisms of protein-PE LbL assembly.•Use unconventional LbL assemblies</abstract><cop>AMSTERDAM</cop><pub>Elsevier B.V</pub><pmid>32416541</pmid><doi>10.1016/j.cis.2020.102161</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-8686 |
ispartof | Advances in colloid and interface science, 2020-06, Vol.280, p.102161-102161, Article 102161 |
issn | 0001-8686 1873-3727 |
language | eng |
recordid | cdi_proquest_miscellaneous_2404045016 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Biomaterial Biosensing Chemistry Chemistry, Physical Drug delivery Hydrogen-Ion Concentration Layer-by-layer Multilayer Physical Sciences Polyelectrolyte Polyelectrolytes - chemistry Protein Proteins - chemistry Proteins - metabolism Science & Technology Solutions Temperature |
title | Protein-based polyelectrolyte multilayers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A49%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein-based%20polyelectrolyte%20multilayers&rft.jtitle=Advances%20in%20colloid%20and%20interface%20science&rft.au=vander%20Straeten,%20Aur%C3%A9lien&rft.date=2020-06&rft.volume=280&rft.spage=102161&rft.epage=102161&rft.pages=102161-102161&rft.artnum=102161&rft.issn=0001-8686&rft.eissn=1873-3727&rft_id=info:doi/10.1016/j.cis.2020.102161&rft_dat=%3Cproquest_elsev%3E2404045016%3C/proquest_elsev%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404045016&rft_id=info:pmid/32416541&rft_els_id=S000186861930452X&rfr_iscdi=true |