Direct Pyrolysis of Supermolecules: An Ultrahigh Edge‐Nitrogen Doping Strategy of Carbon Anodes for Potassium‐Ion Batteries

Most reported carbonaceous anodes of potassium‐ion batteries (PIBs) have limited capacities. One approach to improve the performance of carbon anodes is edge‐nitrogen doping, which effectively enhances the K‐ion adsorption energy. It remains challenging to achieve high edge‐nitrogen doping due to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2020-06, Vol.32 (25), p.e2000732-n/a
Hauptverfasser: Zhang, Wenli, Yin, Jian, Sun, Minglei, Wang, Wenxi, Chen, Cailing, Altunkaya, Mustafa, Emwas, Abdul‐Hamid, Han, Yu, Schwingenschlögl, Udo, Alshareef, Husam N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 25
container_start_page e2000732
container_title Advanced materials (Weinheim)
container_volume 32
creator Zhang, Wenli
Yin, Jian
Sun, Minglei
Wang, Wenxi
Chen, Cailing
Altunkaya, Mustafa
Emwas, Abdul‐Hamid
Han, Yu
Schwingenschlögl, Udo
Alshareef, Husam N.
description Most reported carbonaceous anodes of potassium‐ion batteries (PIBs) have limited capacities. One approach to improve the performance of carbon anodes is edge‐nitrogen doping, which effectively enhances the K‐ion adsorption energy. It remains challenging to achieve high edge‐nitrogen doping due to the difficulty in controlling the nitrogen dopant configuration. Herein, a new synthesis strategy is proposed to prepare carbon anodes with ultrahigh edge‐nitrogen doping for high‐performance PIBs. Specifically, self‐assembled supermolecule precursors derived from pyromellitic acid and melamine are directly pyrolyzed. During the pyrolysis process, the amidation and imidization reactions between pyromellitic acid and melamine before carbonization enable the successful carbonization of pyromellitic acid–melamine supermolecule. The obtained 3D nitrogen‐doped turbostratic carbon (3D‐NTC) possesses a 3D framework composed of carbon nanosheets, turbostratic crystalline structure, and an ultrahigh edge‐nitrogen‐doping level up to 16.8 at% (73.7% of total 22.8 at% nitrogen doping). These features endow 3D‐NTCs with remarkable performances as PIB anodes. The 3D‐NTC anode displays a high capacity of 473 mAh g−1, robust rate capability, and a long cycle life of 500 cycles with a high capacity retention of 93.1%. This new strategy will boost the development of carbon anodes for rechargeable alkali‐metal‐ion batteries. An ultrahigh edge‐nitrogen‐doping strategy is presented. 3D nitrogen‐doped turbostratic carbon (3D‐NTC) with an ultrahigh edge‐nitrogen‐doping level of 16.8 at% is prepared through a novel, general direct supermolecule pyrolysis strategy. Highly edge‐nitrogen‐doped 3D‐NTC shows remarkable performance toward potassium‐ion storage. A high‐performance potassium‐ion full battery is assembled using a 3D‐NTC anode and perylenetetracarboxylic dianhydride as the cathode.
doi_str_mv 10.1002/adma.202000732
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2404041883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404041883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4502-8e216fe80071c2541a90cc7c0d0d36de93f7bebe2317b1a1b04c7223d09408083</originalsourceid><addsrcrecordid>eNqFkc1u2zAQhImiQeI6ufZYEOglFzlLUr-9ubbzAyRtgCRngaJWMg1JdEkJgU7tI_QZ8ySh4SQFcin2sIf5ZrCLIeQzgxkD4GeybOWMAweARPAPZMIizoIQsugjmUAmoiCLw_SIfHJu45kshviQHAkeMuAJTMjvpbaoeno7WtOMTjtqKno3bNG2pkE1NOi-0XlHH5reyrWu13RV1vj05-8P3VtTY0eXZqu7mt55vcd63PkX0ham8zZToqOVsfTW9NI5PbTeeeWl77Lv0Wp0x-Sgko3Dk5c9JQ_nq_vFZXD98-JqMb8OVBgBD1LkLK4w9V8yxaOQyQyUShSUUIq4xExUSYEFcsGSgklWQKgSzkUJWQgppGJKTve5W2t-Dej6vNVOYdPIDs3gch6CH5amwqNf36EbM9jOX-cpFjMep3HiqdmeUtY4Z7HKt1a30o45g3xXTb6rJn-rxhu-vMQORYvlG_7ahQeyPfCoGxz_E5fPlzfzf-HPGpmcPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416126867</pqid></control><display><type>article</type><title>Direct Pyrolysis of Supermolecules: An Ultrahigh Edge‐Nitrogen Doping Strategy of Carbon Anodes for Potassium‐Ion Batteries</title><source>Wiley Journals</source><creator>Zhang, Wenli ; Yin, Jian ; Sun, Minglei ; Wang, Wenxi ; Chen, Cailing ; Altunkaya, Mustafa ; Emwas, Abdul‐Hamid ; Han, Yu ; Schwingenschlögl, Udo ; Alshareef, Husam N.</creator><creatorcontrib>Zhang, Wenli ; Yin, Jian ; Sun, Minglei ; Wang, Wenxi ; Chen, Cailing ; Altunkaya, Mustafa ; Emwas, Abdul‐Hamid ; Han, Yu ; Schwingenschlögl, Udo ; Alshareef, Husam N.</creatorcontrib><description>Most reported carbonaceous anodes of potassium‐ion batteries (PIBs) have limited capacities. One approach to improve the performance of carbon anodes is edge‐nitrogen doping, which effectively enhances the K‐ion adsorption energy. It remains challenging to achieve high edge‐nitrogen doping due to the difficulty in controlling the nitrogen dopant configuration. Herein, a new synthesis strategy is proposed to prepare carbon anodes with ultrahigh edge‐nitrogen doping for high‐performance PIBs. Specifically, self‐assembled supermolecule precursors derived from pyromellitic acid and melamine are directly pyrolyzed. During the pyrolysis process, the amidation and imidization reactions between pyromellitic acid and melamine before carbonization enable the successful carbonization of pyromellitic acid–melamine supermolecule. The obtained 3D nitrogen‐doped turbostratic carbon (3D‐NTC) possesses a 3D framework composed of carbon nanosheets, turbostratic crystalline structure, and an ultrahigh edge‐nitrogen‐doping level up to 16.8 at% (73.7% of total 22.8 at% nitrogen doping). These features endow 3D‐NTCs with remarkable performances as PIB anodes. The 3D‐NTC anode displays a high capacity of 473 mAh g−1, robust rate capability, and a long cycle life of 500 cycles with a high capacity retention of 93.1%. This new strategy will boost the development of carbon anodes for rechargeable alkali‐metal‐ion batteries. An ultrahigh edge‐nitrogen‐doping strategy is presented. 3D nitrogen‐doped turbostratic carbon (3D‐NTC) with an ultrahigh edge‐nitrogen‐doping level of 16.8 at% is prepared through a novel, general direct supermolecule pyrolysis strategy. Highly edge‐nitrogen‐doped 3D‐NTC shows remarkable performance toward potassium‐ion storage. A high‐performance potassium‐ion full battery is assembled using a 3D‐NTC anode and perylenetetracarboxylic dianhydride as the cathode.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202000732</identifier><identifier>PMID: 32410270</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>active sites ; Alkali metals ; Anode effect ; anodes materials ; Carbon ; Carbonization ; Doping ; Ion adsorption ; Materials science ; Melamine ; Nitrogen ; nitrogen doping ; Performance enhancement ; Potassium ; potassium‐ion batteries ; Pyrolysis ; Rechargeable batteries ; Strategy</subject><ispartof>Advanced materials (Weinheim), 2020-06, Vol.32 (25), p.e2000732-n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4502-8e216fe80071c2541a90cc7c0d0d36de93f7bebe2317b1a1b04c7223d09408083</citedby><cites>FETCH-LOGICAL-c4502-8e216fe80071c2541a90cc7c0d0d36de93f7bebe2317b1a1b04c7223d09408083</cites><orcidid>0000-0001-5029-2142 ; 0000-0002-6781-2826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202000732$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202000732$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32410270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Wenli</creatorcontrib><creatorcontrib>Yin, Jian</creatorcontrib><creatorcontrib>Sun, Minglei</creatorcontrib><creatorcontrib>Wang, Wenxi</creatorcontrib><creatorcontrib>Chen, Cailing</creatorcontrib><creatorcontrib>Altunkaya, Mustafa</creatorcontrib><creatorcontrib>Emwas, Abdul‐Hamid</creatorcontrib><creatorcontrib>Han, Yu</creatorcontrib><creatorcontrib>Schwingenschlögl, Udo</creatorcontrib><creatorcontrib>Alshareef, Husam N.</creatorcontrib><title>Direct Pyrolysis of Supermolecules: An Ultrahigh Edge‐Nitrogen Doping Strategy of Carbon Anodes for Potassium‐Ion Batteries</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Most reported carbonaceous anodes of potassium‐ion batteries (PIBs) have limited capacities. One approach to improve the performance of carbon anodes is edge‐nitrogen doping, which effectively enhances the K‐ion adsorption energy. It remains challenging to achieve high edge‐nitrogen doping due to the difficulty in controlling the nitrogen dopant configuration. Herein, a new synthesis strategy is proposed to prepare carbon anodes with ultrahigh edge‐nitrogen doping for high‐performance PIBs. Specifically, self‐assembled supermolecule precursors derived from pyromellitic acid and melamine are directly pyrolyzed. During the pyrolysis process, the amidation and imidization reactions between pyromellitic acid and melamine before carbonization enable the successful carbonization of pyromellitic acid–melamine supermolecule. The obtained 3D nitrogen‐doped turbostratic carbon (3D‐NTC) possesses a 3D framework composed of carbon nanosheets, turbostratic crystalline structure, and an ultrahigh edge‐nitrogen‐doping level up to 16.8 at% (73.7% of total 22.8 at% nitrogen doping). These features endow 3D‐NTCs with remarkable performances as PIB anodes. The 3D‐NTC anode displays a high capacity of 473 mAh g−1, robust rate capability, and a long cycle life of 500 cycles with a high capacity retention of 93.1%. This new strategy will boost the development of carbon anodes for rechargeable alkali‐metal‐ion batteries. An ultrahigh edge‐nitrogen‐doping strategy is presented. 3D nitrogen‐doped turbostratic carbon (3D‐NTC) with an ultrahigh edge‐nitrogen‐doping level of 16.8 at% is prepared through a novel, general direct supermolecule pyrolysis strategy. Highly edge‐nitrogen‐doped 3D‐NTC shows remarkable performance toward potassium‐ion storage. A high‐performance potassium‐ion full battery is assembled using a 3D‐NTC anode and perylenetetracarboxylic dianhydride as the cathode.</description><subject>active sites</subject><subject>Alkali metals</subject><subject>Anode effect</subject><subject>anodes materials</subject><subject>Carbon</subject><subject>Carbonization</subject><subject>Doping</subject><subject>Ion adsorption</subject><subject>Materials science</subject><subject>Melamine</subject><subject>Nitrogen</subject><subject>nitrogen doping</subject><subject>Performance enhancement</subject><subject>Potassium</subject><subject>potassium‐ion batteries</subject><subject>Pyrolysis</subject><subject>Rechargeable batteries</subject><subject>Strategy</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u2zAQhImiQeI6ufZYEOglFzlLUr-9ubbzAyRtgCRngaJWMg1JdEkJgU7tI_QZ8ySh4SQFcin2sIf5ZrCLIeQzgxkD4GeybOWMAweARPAPZMIizoIQsugjmUAmoiCLw_SIfHJu45kshviQHAkeMuAJTMjvpbaoeno7WtOMTjtqKno3bNG2pkE1NOi-0XlHH5reyrWu13RV1vj05-8P3VtTY0eXZqu7mt55vcd63PkX0ham8zZToqOVsfTW9NI5PbTeeeWl77Lv0Wp0x-Sgko3Dk5c9JQ_nq_vFZXD98-JqMb8OVBgBD1LkLK4w9V8yxaOQyQyUShSUUIq4xExUSYEFcsGSgklWQKgSzkUJWQgppGJKTve5W2t-Dej6vNVOYdPIDs3gch6CH5amwqNf36EbM9jOX-cpFjMep3HiqdmeUtY4Z7HKt1a30o45g3xXTb6rJn-rxhu-vMQORYvlG_7ahQeyPfCoGxz_E5fPlzfzf-HPGpmcPA</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Zhang, Wenli</creator><creator>Yin, Jian</creator><creator>Sun, Minglei</creator><creator>Wang, Wenxi</creator><creator>Chen, Cailing</creator><creator>Altunkaya, Mustafa</creator><creator>Emwas, Abdul‐Hamid</creator><creator>Han, Yu</creator><creator>Schwingenschlögl, Udo</creator><creator>Alshareef, Husam N.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5029-2142</orcidid><orcidid>https://orcid.org/0000-0002-6781-2826</orcidid></search><sort><creationdate>20200601</creationdate><title>Direct Pyrolysis of Supermolecules: An Ultrahigh Edge‐Nitrogen Doping Strategy of Carbon Anodes for Potassium‐Ion Batteries</title><author>Zhang, Wenli ; Yin, Jian ; Sun, Minglei ; Wang, Wenxi ; Chen, Cailing ; Altunkaya, Mustafa ; Emwas, Abdul‐Hamid ; Han, Yu ; Schwingenschlögl, Udo ; Alshareef, Husam N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4502-8e216fe80071c2541a90cc7c0d0d36de93f7bebe2317b1a1b04c7223d09408083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>active sites</topic><topic>Alkali metals</topic><topic>Anode effect</topic><topic>anodes materials</topic><topic>Carbon</topic><topic>Carbonization</topic><topic>Doping</topic><topic>Ion adsorption</topic><topic>Materials science</topic><topic>Melamine</topic><topic>Nitrogen</topic><topic>nitrogen doping</topic><topic>Performance enhancement</topic><topic>Potassium</topic><topic>potassium‐ion batteries</topic><topic>Pyrolysis</topic><topic>Rechargeable batteries</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wenli</creatorcontrib><creatorcontrib>Yin, Jian</creatorcontrib><creatorcontrib>Sun, Minglei</creatorcontrib><creatorcontrib>Wang, Wenxi</creatorcontrib><creatorcontrib>Chen, Cailing</creatorcontrib><creatorcontrib>Altunkaya, Mustafa</creatorcontrib><creatorcontrib>Emwas, Abdul‐Hamid</creatorcontrib><creatorcontrib>Han, Yu</creatorcontrib><creatorcontrib>Schwingenschlögl, Udo</creatorcontrib><creatorcontrib>Alshareef, Husam N.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Wenli</au><au>Yin, Jian</au><au>Sun, Minglei</au><au>Wang, Wenxi</au><au>Chen, Cailing</au><au>Altunkaya, Mustafa</au><au>Emwas, Abdul‐Hamid</au><au>Han, Yu</au><au>Schwingenschlögl, Udo</au><au>Alshareef, Husam N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Pyrolysis of Supermolecules: An Ultrahigh Edge‐Nitrogen Doping Strategy of Carbon Anodes for Potassium‐Ion Batteries</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>32</volume><issue>25</issue><spage>e2000732</spage><epage>n/a</epage><pages>e2000732-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Most reported carbonaceous anodes of potassium‐ion batteries (PIBs) have limited capacities. One approach to improve the performance of carbon anodes is edge‐nitrogen doping, which effectively enhances the K‐ion adsorption energy. It remains challenging to achieve high edge‐nitrogen doping due to the difficulty in controlling the nitrogen dopant configuration. Herein, a new synthesis strategy is proposed to prepare carbon anodes with ultrahigh edge‐nitrogen doping for high‐performance PIBs. Specifically, self‐assembled supermolecule precursors derived from pyromellitic acid and melamine are directly pyrolyzed. During the pyrolysis process, the amidation and imidization reactions between pyromellitic acid and melamine before carbonization enable the successful carbonization of pyromellitic acid–melamine supermolecule. The obtained 3D nitrogen‐doped turbostratic carbon (3D‐NTC) possesses a 3D framework composed of carbon nanosheets, turbostratic crystalline structure, and an ultrahigh edge‐nitrogen‐doping level up to 16.8 at% (73.7% of total 22.8 at% nitrogen doping). These features endow 3D‐NTCs with remarkable performances as PIB anodes. The 3D‐NTC anode displays a high capacity of 473 mAh g−1, robust rate capability, and a long cycle life of 500 cycles with a high capacity retention of 93.1%. This new strategy will boost the development of carbon anodes for rechargeable alkali‐metal‐ion batteries. An ultrahigh edge‐nitrogen‐doping strategy is presented. 3D nitrogen‐doped turbostratic carbon (3D‐NTC) with an ultrahigh edge‐nitrogen‐doping level of 16.8 at% is prepared through a novel, general direct supermolecule pyrolysis strategy. Highly edge‐nitrogen‐doped 3D‐NTC shows remarkable performance toward potassium‐ion storage. A high‐performance potassium‐ion full battery is assembled using a 3D‐NTC anode and perylenetetracarboxylic dianhydride as the cathode.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32410270</pmid><doi>10.1002/adma.202000732</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5029-2142</orcidid><orcidid>https://orcid.org/0000-0002-6781-2826</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2020-06, Vol.32 (25), p.e2000732-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2404041883
source Wiley Journals
subjects active sites
Alkali metals
Anode effect
anodes materials
Carbon
Carbonization
Doping
Ion adsorption
Materials science
Melamine
Nitrogen
nitrogen doping
Performance enhancement
Potassium
potassium‐ion batteries
Pyrolysis
Rechargeable batteries
Strategy
title Direct Pyrolysis of Supermolecules: An Ultrahigh Edge‐Nitrogen Doping Strategy of Carbon Anodes for Potassium‐Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A47%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Pyrolysis%20of%20Supermolecules:%20An%20Ultrahigh%20Edge%E2%80%90Nitrogen%20Doping%20Strategy%20of%20Carbon%20Anodes%20for%20Potassium%E2%80%90Ion%20Batteries&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhang,%20Wenli&rft.date=2020-06-01&rft.volume=32&rft.issue=25&rft.spage=e2000732&rft.epage=n/a&rft.pages=e2000732-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202000732&rft_dat=%3Cproquest_cross%3E2404041883%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2416126867&rft_id=info:pmid/32410270&rfr_iscdi=true