Hair Regeneration Potential of Human Dermal Sheath Cells Cultured Under Physiological Oxygen

We investigated the effect of oxygen tension on the proliferation and hair-inductive capacity of human dermal papilla cells (DPCs) and dermal sheath cells (DSCs). DPCs and DSCs were separately obtained from human hair follicles and each cultured under atmospheric/hyperoxic (20% O 2 ), physiological/...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tissue engineering. Part A 2020-11, Vol.26 (21-22), p.1147-1157
Hauptverfasser: Kanayama, Koji, Takada, Hitomi, Saito, Natsumi, Kato, Harunosuke, Kinoshita, Kahori, Shirado, Takako, Mashiko, Takanobu, Asahi, Rintaro, Mori, Masanori, Tashiro, Kensuke, Sunaga, Ataru, Kurisaki, Akira, Yoshizato, Katsutoshi, Yoshimura, Kotaro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1157
container_issue 21-22
container_start_page 1147
container_title Tissue engineering. Part A
container_volume 26
creator Kanayama, Koji
Takada, Hitomi
Saito, Natsumi
Kato, Harunosuke
Kinoshita, Kahori
Shirado, Takako
Mashiko, Takanobu
Asahi, Rintaro
Mori, Masanori
Tashiro, Kensuke
Sunaga, Ataru
Kurisaki, Akira
Yoshizato, Katsutoshi
Yoshimura, Kotaro
description We investigated the effect of oxygen tension on the proliferation and hair-inductive capacity of human dermal papilla cells (DPCs) and dermal sheath cells (DSCs). DPCs and DSCs were separately obtained from human hair follicles and each cultured under atmospheric/hyperoxic (20% O 2 ), physiological/normoxic (6% O 2 ), or hypoxic (1% O 2 ) conditions. Proliferation of DPCs and DSCs was highest under normoxia. Compared with hyperoxia, hypoxia inhibited proliferation of DPCs, but enhanced that of DSCs. In DPCs, hypoxia downregulated the expression of hair-inductive capacity-related genes, including BMP4 , LEF1 , SOX2 , and VCAN . In DSCs, both normoxia and hypoxia upregulated SOX2 expression, whereas hypoxia downregulated BMP4 expression. Microarray analysis revealed that normoxia increased the expression of pluripotency-related genes, including SPRY , NR0B1 , MSX2 , IFITM1 , and DAZL , compared with hyperoxia. In an in vivo hair follicle reconstitution assay, cultured DPCs and DSCs were transplanted with newborn mouse epidermal keratinocytes into nude mice using a chamber method. In this experiment, normoxia resulted in the most efficient induction of DPC hair follicles, whereas hypoxia caused the most efficient induction and maturation of DSC hair follicles. These results suggest that application of physiological/hypoxic oxygen tension to cultured human DSCs enhances proliferation and maintenance of hair inductivity for skin engineering and clinical applications.
doi_str_mv 10.1089/ten.tea.2019.0329
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2404040634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404040634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-7788ac05f12827961233deade3d9b4cfcc1fbd9a89a0dc41f076d065d11160563</originalsourceid><addsrcrecordid>eNqNkF1LwzAUhoMofkx_gDcS8Mab1aTp0uZS5seEgUMdeCGUNDl1lTbRJAX3703Z9MIrCSEn4TkvJw9Cp5QklBTiMoBJAsgkJVQkhKViBx1SwfIxY5OX3d86owfoyPt3Qjjheb6PDliakaIg7BC9zmTj8CO8gQEnQ2MNXtiYGxrZYlvjWd9Jg6_BdfH-tAIZVngKbevxtG9D70DjpdHg8GK19o1t7VujIvnwtY6Jx2ivlq2Hk-05Qsvbm-fpbDx_uLufXs3HKhM0jPO8KKQik5qmRZoLTlPGNEgNTIsqU7VStK60kIWQRKuM1iTnmvCJppRyMuFshC42uR_OfvbgQ9k1XsUppQHb-zL-dlicZRE9_4O-296ZOF2kOCVZwZiIFN1QylnvHdTlh2s66dYlJeWgvoyK4pbloL4c1Mees21yX3Wgfzt-XEcg3wDDszSmbaACF_4R_Q17NJMH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461048339</pqid></control><display><type>article</type><title>Hair Regeneration Potential of Human Dermal Sheath Cells Cultured Under Physiological Oxygen</title><source>Alma/SFX Local Collection</source><creator>Kanayama, Koji ; Takada, Hitomi ; Saito, Natsumi ; Kato, Harunosuke ; Kinoshita, Kahori ; Shirado, Takako ; Mashiko, Takanobu ; Asahi, Rintaro ; Mori, Masanori ; Tashiro, Kensuke ; Sunaga, Ataru ; Kurisaki, Akira ; Yoshizato, Katsutoshi ; Yoshimura, Kotaro</creator><creatorcontrib>Kanayama, Koji ; Takada, Hitomi ; Saito, Natsumi ; Kato, Harunosuke ; Kinoshita, Kahori ; Shirado, Takako ; Mashiko, Takanobu ; Asahi, Rintaro ; Mori, Masanori ; Tashiro, Kensuke ; Sunaga, Ataru ; Kurisaki, Akira ; Yoshizato, Katsutoshi ; Yoshimura, Kotaro</creatorcontrib><description>We investigated the effect of oxygen tension on the proliferation and hair-inductive capacity of human dermal papilla cells (DPCs) and dermal sheath cells (DSCs). DPCs and DSCs were separately obtained from human hair follicles and each cultured under atmospheric/hyperoxic (20% O 2 ), physiological/normoxic (6% O 2 ), or hypoxic (1% O 2 ) conditions. Proliferation of DPCs and DSCs was highest under normoxia. Compared with hyperoxia, hypoxia inhibited proliferation of DPCs, but enhanced that of DSCs. In DPCs, hypoxia downregulated the expression of hair-inductive capacity-related genes, including BMP4 , LEF1 , SOX2 , and VCAN . In DSCs, both normoxia and hypoxia upregulated SOX2 expression, whereas hypoxia downregulated BMP4 expression. Microarray analysis revealed that normoxia increased the expression of pluripotency-related genes, including SPRY , NR0B1 , MSX2 , IFITM1 , and DAZL , compared with hyperoxia. In an in vivo hair follicle reconstitution assay, cultured DPCs and DSCs were transplanted with newborn mouse epidermal keratinocytes into nude mice using a chamber method. In this experiment, normoxia resulted in the most efficient induction of DPC hair follicles, whereas hypoxia caused the most efficient induction and maturation of DSC hair follicles. These results suggest that application of physiological/hypoxic oxygen tension to cultured human DSCs enhances proliferation and maintenance of hair inductivity for skin engineering and clinical applications.</description><identifier>ISSN: 1937-3341</identifier><identifier>EISSN: 1937-335X</identifier><identifier>DOI: 10.1089/ten.tea.2019.0329</identifier><identifier>PMID: 32408803</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc., publishers</publisher><subject>Cell culture ; Cell proliferation ; Follicles ; Hyperoxia ; Hypoxia ; Keratinocytes ; Msx2 protein ; Original Articles ; Oxygen tension ; Physiology ; Pluripotency ; Skin ; Therapeutic applications ; Wound healing</subject><ispartof>Tissue engineering. Part A, 2020-11, Vol.26 (21-22), p.1147-1157</ispartof><rights>2020, Mary Ann Liebert, Inc., publishers</rights><rights>Copyright Mary Ann Liebert, Inc. Nov 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-7788ac05f12827961233deade3d9b4cfcc1fbd9a89a0dc41f076d065d11160563</citedby><cites>FETCH-LOGICAL-c491t-7788ac05f12827961233deade3d9b4cfcc1fbd9a89a0dc41f076d065d11160563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32408803$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kanayama, Koji</creatorcontrib><creatorcontrib>Takada, Hitomi</creatorcontrib><creatorcontrib>Saito, Natsumi</creatorcontrib><creatorcontrib>Kato, Harunosuke</creatorcontrib><creatorcontrib>Kinoshita, Kahori</creatorcontrib><creatorcontrib>Shirado, Takako</creatorcontrib><creatorcontrib>Mashiko, Takanobu</creatorcontrib><creatorcontrib>Asahi, Rintaro</creatorcontrib><creatorcontrib>Mori, Masanori</creatorcontrib><creatorcontrib>Tashiro, Kensuke</creatorcontrib><creatorcontrib>Sunaga, Ataru</creatorcontrib><creatorcontrib>Kurisaki, Akira</creatorcontrib><creatorcontrib>Yoshizato, Katsutoshi</creatorcontrib><creatorcontrib>Yoshimura, Kotaro</creatorcontrib><title>Hair Regeneration Potential of Human Dermal Sheath Cells Cultured Under Physiological Oxygen</title><title>Tissue engineering. Part A</title><addtitle>Tissue Eng Part A</addtitle><description>We investigated the effect of oxygen tension on the proliferation and hair-inductive capacity of human dermal papilla cells (DPCs) and dermal sheath cells (DSCs). DPCs and DSCs were separately obtained from human hair follicles and each cultured under atmospheric/hyperoxic (20% O 2 ), physiological/normoxic (6% O 2 ), or hypoxic (1% O 2 ) conditions. Proliferation of DPCs and DSCs was highest under normoxia. Compared with hyperoxia, hypoxia inhibited proliferation of DPCs, but enhanced that of DSCs. In DPCs, hypoxia downregulated the expression of hair-inductive capacity-related genes, including BMP4 , LEF1 , SOX2 , and VCAN . In DSCs, both normoxia and hypoxia upregulated SOX2 expression, whereas hypoxia downregulated BMP4 expression. Microarray analysis revealed that normoxia increased the expression of pluripotency-related genes, including SPRY , NR0B1 , MSX2 , IFITM1 , and DAZL , compared with hyperoxia. In an in vivo hair follicle reconstitution assay, cultured DPCs and DSCs were transplanted with newborn mouse epidermal keratinocytes into nude mice using a chamber method. In this experiment, normoxia resulted in the most efficient induction of DPC hair follicles, whereas hypoxia caused the most efficient induction and maturation of DSC hair follicles. These results suggest that application of physiological/hypoxic oxygen tension to cultured human DSCs enhances proliferation and maintenance of hair inductivity for skin engineering and clinical applications.</description><subject>Cell culture</subject><subject>Cell proliferation</subject><subject>Follicles</subject><subject>Hyperoxia</subject><subject>Hypoxia</subject><subject>Keratinocytes</subject><subject>Msx2 protein</subject><subject>Original Articles</subject><subject>Oxygen tension</subject><subject>Physiology</subject><subject>Pluripotency</subject><subject>Skin</subject><subject>Therapeutic applications</subject><subject>Wound healing</subject><issn>1937-3341</issn><issn>1937-335X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkF1LwzAUhoMofkx_gDcS8Mab1aTp0uZS5seEgUMdeCGUNDl1lTbRJAX3703Z9MIrCSEn4TkvJw9Cp5QklBTiMoBJAsgkJVQkhKViBx1SwfIxY5OX3d86owfoyPt3Qjjheb6PDliakaIg7BC9zmTj8CO8gQEnQ2MNXtiYGxrZYlvjWd9Jg6_BdfH-tAIZVngKbevxtG9D70DjpdHg8GK19o1t7VujIvnwtY6Jx2ivlq2Hk-05Qsvbm-fpbDx_uLufXs3HKhM0jPO8KKQik5qmRZoLTlPGNEgNTIsqU7VStK60kIWQRKuM1iTnmvCJppRyMuFshC42uR_OfvbgQ9k1XsUppQHb-zL-dlicZRE9_4O-296ZOF2kOCVZwZiIFN1QylnvHdTlh2s66dYlJeWgvoyK4pbloL4c1Mees21yX3Wgfzt-XEcg3wDDszSmbaACF_4R_Q17NJMH</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Kanayama, Koji</creator><creator>Takada, Hitomi</creator><creator>Saito, Natsumi</creator><creator>Kato, Harunosuke</creator><creator>Kinoshita, Kahori</creator><creator>Shirado, Takako</creator><creator>Mashiko, Takanobu</creator><creator>Asahi, Rintaro</creator><creator>Mori, Masanori</creator><creator>Tashiro, Kensuke</creator><creator>Sunaga, Ataru</creator><creator>Kurisaki, Akira</creator><creator>Yoshizato, Katsutoshi</creator><creator>Yoshimura, Kotaro</creator><general>Mary Ann Liebert, Inc., publishers</general><general>Mary Ann Liebert, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20201101</creationdate><title>Hair Regeneration Potential of Human Dermal Sheath Cells Cultured Under Physiological Oxygen</title><author>Kanayama, Koji ; Takada, Hitomi ; Saito, Natsumi ; Kato, Harunosuke ; Kinoshita, Kahori ; Shirado, Takako ; Mashiko, Takanobu ; Asahi, Rintaro ; Mori, Masanori ; Tashiro, Kensuke ; Sunaga, Ataru ; Kurisaki, Akira ; Yoshizato, Katsutoshi ; Yoshimura, Kotaro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-7788ac05f12827961233deade3d9b4cfcc1fbd9a89a0dc41f076d065d11160563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cell culture</topic><topic>Cell proliferation</topic><topic>Follicles</topic><topic>Hyperoxia</topic><topic>Hypoxia</topic><topic>Keratinocytes</topic><topic>Msx2 protein</topic><topic>Original Articles</topic><topic>Oxygen tension</topic><topic>Physiology</topic><topic>Pluripotency</topic><topic>Skin</topic><topic>Therapeutic applications</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanayama, Koji</creatorcontrib><creatorcontrib>Takada, Hitomi</creatorcontrib><creatorcontrib>Saito, Natsumi</creatorcontrib><creatorcontrib>Kato, Harunosuke</creatorcontrib><creatorcontrib>Kinoshita, Kahori</creatorcontrib><creatorcontrib>Shirado, Takako</creatorcontrib><creatorcontrib>Mashiko, Takanobu</creatorcontrib><creatorcontrib>Asahi, Rintaro</creatorcontrib><creatorcontrib>Mori, Masanori</creatorcontrib><creatorcontrib>Tashiro, Kensuke</creatorcontrib><creatorcontrib>Sunaga, Ataru</creatorcontrib><creatorcontrib>Kurisaki, Akira</creatorcontrib><creatorcontrib>Yoshizato, Katsutoshi</creatorcontrib><creatorcontrib>Yoshimura, Kotaro</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Tissue engineering. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanayama, Koji</au><au>Takada, Hitomi</au><au>Saito, Natsumi</au><au>Kato, Harunosuke</au><au>Kinoshita, Kahori</au><au>Shirado, Takako</au><au>Mashiko, Takanobu</au><au>Asahi, Rintaro</au><au>Mori, Masanori</au><au>Tashiro, Kensuke</au><au>Sunaga, Ataru</au><au>Kurisaki, Akira</au><au>Yoshizato, Katsutoshi</au><au>Yoshimura, Kotaro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hair Regeneration Potential of Human Dermal Sheath Cells Cultured Under Physiological Oxygen</atitle><jtitle>Tissue engineering. Part A</jtitle><addtitle>Tissue Eng Part A</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>26</volume><issue>21-22</issue><spage>1147</spage><epage>1157</epage><pages>1147-1157</pages><issn>1937-3341</issn><eissn>1937-335X</eissn><abstract>We investigated the effect of oxygen tension on the proliferation and hair-inductive capacity of human dermal papilla cells (DPCs) and dermal sheath cells (DSCs). DPCs and DSCs were separately obtained from human hair follicles and each cultured under atmospheric/hyperoxic (20% O 2 ), physiological/normoxic (6% O 2 ), or hypoxic (1% O 2 ) conditions. Proliferation of DPCs and DSCs was highest under normoxia. Compared with hyperoxia, hypoxia inhibited proliferation of DPCs, but enhanced that of DSCs. In DPCs, hypoxia downregulated the expression of hair-inductive capacity-related genes, including BMP4 , LEF1 , SOX2 , and VCAN . In DSCs, both normoxia and hypoxia upregulated SOX2 expression, whereas hypoxia downregulated BMP4 expression. Microarray analysis revealed that normoxia increased the expression of pluripotency-related genes, including SPRY , NR0B1 , MSX2 , IFITM1 , and DAZL , compared with hyperoxia. In an in vivo hair follicle reconstitution assay, cultured DPCs and DSCs were transplanted with newborn mouse epidermal keratinocytes into nude mice using a chamber method. In this experiment, normoxia resulted in the most efficient induction of DPC hair follicles, whereas hypoxia caused the most efficient induction and maturation of DSC hair follicles. These results suggest that application of physiological/hypoxic oxygen tension to cultured human DSCs enhances proliferation and maintenance of hair inductivity for skin engineering and clinical applications.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc., publishers</pub><pmid>32408803</pmid><doi>10.1089/ten.tea.2019.0329</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1937-3341
ispartof Tissue engineering. Part A, 2020-11, Vol.26 (21-22), p.1147-1157
issn 1937-3341
1937-335X
language eng
recordid cdi_proquest_miscellaneous_2404040634
source Alma/SFX Local Collection
subjects Cell culture
Cell proliferation
Follicles
Hyperoxia
Hypoxia
Keratinocytes
Msx2 protein
Original Articles
Oxygen tension
Physiology
Pluripotency
Skin
Therapeutic applications
Wound healing
title Hair Regeneration Potential of Human Dermal Sheath Cells Cultured Under Physiological Oxygen
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A20%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hair%20Regeneration%20Potential%20of%20Human%20Dermal%20Sheath%20Cells%20Cultured%20Under%20Physiological%20Oxygen&rft.jtitle=Tissue%20engineering.%20Part%20A&rft.au=Kanayama,%20Koji&rft.date=2020-11-01&rft.volume=26&rft.issue=21-22&rft.spage=1147&rft.epage=1157&rft.pages=1147-1157&rft.issn=1937-3341&rft.eissn=1937-335X&rft_id=info:doi/10.1089/ten.tea.2019.0329&rft_dat=%3Cproquest_cross%3E2404040634%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461048339&rft_id=info:pmid/32408803&rfr_iscdi=true