Wavefront correction for adaptive optics with reflected light and deep neural networks

Light scattering and aberrations limit optical microscopy in biological tissue, which motivates the development of adaptive optics techniques. Here, we develop a method for wavefront correction in adaptive optics with reflected light and deep neural networks compatible with an epi-detection configur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2020-05, Vol.28 (10), p.15459-15471
Hauptverfasser: Vishniakou, Ivan, Seelig, Johannes D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15471
container_issue 10
container_start_page 15459
container_title Optics express
container_volume 28
creator Vishniakou, Ivan
Seelig, Johannes D
description Light scattering and aberrations limit optical microscopy in biological tissue, which motivates the development of adaptive optics techniques. Here, we develop a method for wavefront correction in adaptive optics with reflected light and deep neural networks compatible with an epi-detection configuration. Large datasets of sample aberrations which consist of excitation and detection path aberrations as well as the corresponding reflected focus images are generated. These datasets are used for training deep neural networks. After training, these networks can disentangle and independently correct excitation and detection aberrations based on reflected light images recorded from scattering samples. A similar deep learning approach is also demonstrated with scattering guide stars. The predicted aberration corrections are validated using two photon imaging.
doi_str_mv 10.1364/OE.392794
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2403040147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2403040147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-d23ac50cf8d9872f826943147f9a2e2c9fc6b6d7bd02485347f44e0a7f5c29963</originalsourceid><addsrcrecordid>eNpNkMtOwzAURC0EoqWw4AeQl7BocWwnjpeoKg-pUjc8lpFrX9NAGgfbacXf46oFsZqR7tHoziB0mZFJxgp-u5hNmKRC8iM0zIjkY05KcfzPD9BZCB-EZFxIcYoGjHLCcsGG6PVNbcB610asnfegY-1abJ3Hyqgu1hvALokOeFvHFfZgm8SAwU39vopYtQYbgA630HvVJIlb5z_DOTqxqglwcdARermfPU8fx_PFw9P0bj7WjJI4NpQpnRNtSyNLQW1JC8lZ-tJKRYFqaXWxLIxYGkJ5mbN04ByIEjbXVMqCjdD1Prfz7quHEKt1HTQ0jWrB9aHa9SR81zuhN3tUexdCKlJ1vl4r_11lpNrNWC1m1X7GxF4dYvvlGswf-bsb-wEDfm0o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2403040147</pqid></control><display><type>article</type><title>Wavefront correction for adaptive optics with reflected light and deep neural networks</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Vishniakou, Ivan ; Seelig, Johannes D</creator><creatorcontrib>Vishniakou, Ivan ; Seelig, Johannes D</creatorcontrib><description>Light scattering and aberrations limit optical microscopy in biological tissue, which motivates the development of adaptive optics techniques. Here, we develop a method for wavefront correction in adaptive optics with reflected light and deep neural networks compatible with an epi-detection configuration. Large datasets of sample aberrations which consist of excitation and detection path aberrations as well as the corresponding reflected focus images are generated. These datasets are used for training deep neural networks. After training, these networks can disentangle and independently correct excitation and detection aberrations based on reflected light images recorded from scattering samples. A similar deep learning approach is also demonstrated with scattering guide stars. The predicted aberration corrections are validated using two photon imaging.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.392794</identifier><identifier>PMID: 32403573</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2020-05, Vol.28 (10), p.15459-15471</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-d23ac50cf8d9872f826943147f9a2e2c9fc6b6d7bd02485347f44e0a7f5c29963</citedby><cites>FETCH-LOGICAL-c320t-d23ac50cf8d9872f826943147f9a2e2c9fc6b6d7bd02485347f44e0a7f5c29963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32403573$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vishniakou, Ivan</creatorcontrib><creatorcontrib>Seelig, Johannes D</creatorcontrib><title>Wavefront correction for adaptive optics with reflected light and deep neural networks</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>Light scattering and aberrations limit optical microscopy in biological tissue, which motivates the development of adaptive optics techniques. Here, we develop a method for wavefront correction in adaptive optics with reflected light and deep neural networks compatible with an epi-detection configuration. Large datasets of sample aberrations which consist of excitation and detection path aberrations as well as the corresponding reflected focus images are generated. These datasets are used for training deep neural networks. After training, these networks can disentangle and independently correct excitation and detection aberrations based on reflected light images recorded from scattering samples. A similar deep learning approach is also demonstrated with scattering guide stars. The predicted aberration corrections are validated using two photon imaging.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAURC0EoqWw4AeQl7BocWwnjpeoKg-pUjc8lpFrX9NAGgfbacXf46oFsZqR7tHoziB0mZFJxgp-u5hNmKRC8iM0zIjkY05KcfzPD9BZCB-EZFxIcYoGjHLCcsGG6PVNbcB610asnfegY-1abJ3Hyqgu1hvALokOeFvHFfZgm8SAwU39vopYtQYbgA630HvVJIlb5z_DOTqxqglwcdARermfPU8fx_PFw9P0bj7WjJI4NpQpnRNtSyNLQW1JC8lZ-tJKRYFqaXWxLIxYGkJ5mbN04ByIEjbXVMqCjdD1Prfz7quHEKt1HTQ0jWrB9aHa9SR81zuhN3tUexdCKlJ1vl4r_11lpNrNWC1m1X7GxF4dYvvlGswf-bsb-wEDfm0o</recordid><startdate>20200511</startdate><enddate>20200511</enddate><creator>Vishniakou, Ivan</creator><creator>Seelig, Johannes D</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20200511</creationdate><title>Wavefront correction for adaptive optics with reflected light and deep neural networks</title><author>Vishniakou, Ivan ; Seelig, Johannes D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-d23ac50cf8d9872f826943147f9a2e2c9fc6b6d7bd02485347f44e0a7f5c29963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vishniakou, Ivan</creatorcontrib><creatorcontrib>Seelig, Johannes D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vishniakou, Ivan</au><au>Seelig, Johannes D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wavefront correction for adaptive optics with reflected light and deep neural networks</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2020-05-11</date><risdate>2020</risdate><volume>28</volume><issue>10</issue><spage>15459</spage><epage>15471</epage><pages>15459-15471</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Light scattering and aberrations limit optical microscopy in biological tissue, which motivates the development of adaptive optics techniques. Here, we develop a method for wavefront correction in adaptive optics with reflected light and deep neural networks compatible with an epi-detection configuration. Large datasets of sample aberrations which consist of excitation and detection path aberrations as well as the corresponding reflected focus images are generated. These datasets are used for training deep neural networks. After training, these networks can disentangle and independently correct excitation and detection aberrations based on reflected light images recorded from scattering samples. A similar deep learning approach is also demonstrated with scattering guide stars. The predicted aberration corrections are validated using two photon imaging.</abstract><cop>United States</cop><pmid>32403573</pmid><doi>10.1364/OE.392794</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2020-05, Vol.28 (10), p.15459-15471
issn 1094-4087
1094-4087
language eng
recordid cdi_proquest_miscellaneous_2403040147
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title Wavefront correction for adaptive optics with reflected light and deep neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A04%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wavefront%20correction%20for%20adaptive%20optics%20with%20reflected%20light%20and%20deep%20neural%20networks&rft.jtitle=Optics%20express&rft.au=Vishniakou,%20Ivan&rft.date=2020-05-11&rft.volume=28&rft.issue=10&rft.spage=15459&rft.epage=15471&rft.pages=15459-15471&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.392794&rft_dat=%3Cproquest_cross%3E2403040147%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2403040147&rft_id=info:pmid/32403573&rfr_iscdi=true