Wavefront correction for adaptive optics with reflected light and deep neural networks
Light scattering and aberrations limit optical microscopy in biological tissue, which motivates the development of adaptive optics techniques. Here, we develop a method for wavefront correction in adaptive optics with reflected light and deep neural networks compatible with an epi-detection configur...
Gespeichert in:
Veröffentlicht in: | Optics express 2020-05, Vol.28 (10), p.15459-15471 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15471 |
---|---|
container_issue | 10 |
container_start_page | 15459 |
container_title | Optics express |
container_volume | 28 |
creator | Vishniakou, Ivan Seelig, Johannes D |
description | Light scattering and aberrations limit optical microscopy in biological tissue, which motivates the development of adaptive optics techniques. Here, we develop a method for wavefront correction in adaptive optics with reflected light and deep neural networks compatible with an epi-detection configuration. Large datasets of sample aberrations which consist of excitation and detection path aberrations as well as the corresponding reflected focus images are generated. These datasets are used for training deep neural networks. After training, these networks can disentangle and independently correct excitation and detection aberrations based on reflected light images recorded from scattering samples. A similar deep learning approach is also demonstrated with scattering guide stars. The predicted aberration corrections are validated using two photon imaging. |
doi_str_mv | 10.1364/OE.392794 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2403040147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2403040147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-d23ac50cf8d9872f826943147f9a2e2c9fc6b6d7bd02485347f44e0a7f5c29963</originalsourceid><addsrcrecordid>eNpNkMtOwzAURC0EoqWw4AeQl7BocWwnjpeoKg-pUjc8lpFrX9NAGgfbacXf46oFsZqR7tHoziB0mZFJxgp-u5hNmKRC8iM0zIjkY05KcfzPD9BZCB-EZFxIcYoGjHLCcsGG6PVNbcB610asnfegY-1abJ3Hyqgu1hvALokOeFvHFfZgm8SAwU39vopYtQYbgA630HvVJIlb5z_DOTqxqglwcdARermfPU8fx_PFw9P0bj7WjJI4NpQpnRNtSyNLQW1JC8lZ-tJKRYFqaXWxLIxYGkJ5mbN04ByIEjbXVMqCjdD1Prfz7quHEKt1HTQ0jWrB9aHa9SR81zuhN3tUexdCKlJ1vl4r_11lpNrNWC1m1X7GxF4dYvvlGswf-bsb-wEDfm0o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2403040147</pqid></control><display><type>article</type><title>Wavefront correction for adaptive optics with reflected light and deep neural networks</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Vishniakou, Ivan ; Seelig, Johannes D</creator><creatorcontrib>Vishniakou, Ivan ; Seelig, Johannes D</creatorcontrib><description>Light scattering and aberrations limit optical microscopy in biological tissue, which motivates the development of adaptive optics techniques. Here, we develop a method for wavefront correction in adaptive optics with reflected light and deep neural networks compatible with an epi-detection configuration. Large datasets of sample aberrations which consist of excitation and detection path aberrations as well as the corresponding reflected focus images are generated. These datasets are used for training deep neural networks. After training, these networks can disentangle and independently correct excitation and detection aberrations based on reflected light images recorded from scattering samples. A similar deep learning approach is also demonstrated with scattering guide stars. The predicted aberration corrections are validated using two photon imaging.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.392794</identifier><identifier>PMID: 32403573</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2020-05, Vol.28 (10), p.15459-15471</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-d23ac50cf8d9872f826943147f9a2e2c9fc6b6d7bd02485347f44e0a7f5c29963</citedby><cites>FETCH-LOGICAL-c320t-d23ac50cf8d9872f826943147f9a2e2c9fc6b6d7bd02485347f44e0a7f5c29963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32403573$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vishniakou, Ivan</creatorcontrib><creatorcontrib>Seelig, Johannes D</creatorcontrib><title>Wavefront correction for adaptive optics with reflected light and deep neural networks</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>Light scattering and aberrations limit optical microscopy in biological tissue, which motivates the development of adaptive optics techniques. Here, we develop a method for wavefront correction in adaptive optics with reflected light and deep neural networks compatible with an epi-detection configuration. Large datasets of sample aberrations which consist of excitation and detection path aberrations as well as the corresponding reflected focus images are generated. These datasets are used for training deep neural networks. After training, these networks can disentangle and independently correct excitation and detection aberrations based on reflected light images recorded from scattering samples. A similar deep learning approach is also demonstrated with scattering guide stars. The predicted aberration corrections are validated using two photon imaging.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAURC0EoqWw4AeQl7BocWwnjpeoKg-pUjc8lpFrX9NAGgfbacXf46oFsZqR7tHoziB0mZFJxgp-u5hNmKRC8iM0zIjkY05KcfzPD9BZCB-EZFxIcYoGjHLCcsGG6PVNbcB610asnfegY-1abJ3Hyqgu1hvALokOeFvHFfZgm8SAwU39vopYtQYbgA630HvVJIlb5z_DOTqxqglwcdARermfPU8fx_PFw9P0bj7WjJI4NpQpnRNtSyNLQW1JC8lZ-tJKRYFqaXWxLIxYGkJ5mbN04ByIEjbXVMqCjdD1Prfz7quHEKt1HTQ0jWrB9aHa9SR81zuhN3tUexdCKlJ1vl4r_11lpNrNWC1m1X7GxF4dYvvlGswf-bsb-wEDfm0o</recordid><startdate>20200511</startdate><enddate>20200511</enddate><creator>Vishniakou, Ivan</creator><creator>Seelig, Johannes D</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20200511</creationdate><title>Wavefront correction for adaptive optics with reflected light and deep neural networks</title><author>Vishniakou, Ivan ; Seelig, Johannes D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-d23ac50cf8d9872f826943147f9a2e2c9fc6b6d7bd02485347f44e0a7f5c29963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vishniakou, Ivan</creatorcontrib><creatorcontrib>Seelig, Johannes D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vishniakou, Ivan</au><au>Seelig, Johannes D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wavefront correction for adaptive optics with reflected light and deep neural networks</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2020-05-11</date><risdate>2020</risdate><volume>28</volume><issue>10</issue><spage>15459</spage><epage>15471</epage><pages>15459-15471</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Light scattering and aberrations limit optical microscopy in biological tissue, which motivates the development of adaptive optics techniques. Here, we develop a method for wavefront correction in adaptive optics with reflected light and deep neural networks compatible with an epi-detection configuration. Large datasets of sample aberrations which consist of excitation and detection path aberrations as well as the corresponding reflected focus images are generated. These datasets are used for training deep neural networks. After training, these networks can disentangle and independently correct excitation and detection aberrations based on reflected light images recorded from scattering samples. A similar deep learning approach is also demonstrated with scattering guide stars. The predicted aberration corrections are validated using two photon imaging.</abstract><cop>United States</cop><pmid>32403573</pmid><doi>10.1364/OE.392794</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-4087 |
ispartof | Optics express, 2020-05, Vol.28 (10), p.15459-15471 |
issn | 1094-4087 1094-4087 |
language | eng |
recordid | cdi_proquest_miscellaneous_2403040147 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
title | Wavefront correction for adaptive optics with reflected light and deep neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A04%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wavefront%20correction%20for%20adaptive%20optics%20with%20reflected%20light%20and%20deep%20neural%20networks&rft.jtitle=Optics%20express&rft.au=Vishniakou,%20Ivan&rft.date=2020-05-11&rft.volume=28&rft.issue=10&rft.spage=15459&rft.epage=15471&rft.pages=15459-15471&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.392794&rft_dat=%3Cproquest_cross%3E2403040147%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2403040147&rft_id=info:pmid/32403573&rfr_iscdi=true |