A Humidity‐Induced Nontemplating Route toward Hierarchical Porous Carbon Fiber Hybrid for Efficient Bifunctional Oxygen Catalysis

Hierarchical porous carbons (HPCs) are highly efficient supports for various remarkable catalytic systems. However, templates are commonly utilized for the preparation of HPCs, and the postremoval of the templates is uneconomical, time‐consuming, and harmful for the environment in most cases. Herein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2020-06, Vol.16 (23), p.e2001743-n/a
Hauptverfasser: Tian, Lidong, Ji, Dongxiao, Zhang, Shan, He, Xiaowei, Ramakrishna, Seeram, Zhang, Qiuyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page e2001743
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 16
creator Tian, Lidong
Ji, Dongxiao
Zhang, Shan
He, Xiaowei
Ramakrishna, Seeram
Zhang, Qiuyu
description Hierarchical porous carbons (HPCs) are highly efficient supports for various remarkable catalytic systems. However, templates are commonly utilized for the preparation of HPCs, and the postremoval of the templates is uneconomical, time‐consuming, and harmful for the environment in most cases. Herein, a new humidity‐induced nontemplating strategy is developed to prepare 1D HPC with rich topologies and interconnected cavities for catalysis and energy storage applications. Porous electrospun nanofibers as calcination precursors are prepared via a humidity‐induced phase separation strategy. A nitrogen‐doped hierarchical porous carbon nanofiber (HPCNF), loading Co/Co3O4 hetero‐nanoparticles as exemplary nonprecious‐metal active substance (Co/Co3O4@HPCNF), is fabricated through the subsequent hydrothermal and pyrolysis treatment. The internal mesopore and cavity structure can be simply controlled by varying environment humidity during the electrospinning process. Benefiting from the unique topology, Co/Co3O4@HPCNF exhibits superior bifunctional activity when being used as electrocatalysts for oxygen reduction/evolution reactions. Moreover, the hybrid catalyst also demonstrates a remarkable power density of 102.5 mW cm−2, a high capacity of 748.5 mAh gZn−1, and long cycle life in Zinc–air batteries. The developed approach offers a facile template‐free route for the preparation of HPCNF hybrid and can be extended to other members of the large polymer family for catalyst design and energy storage applications. A new humidity‐induced nontemplating strategy for the general synthesis of hierarchical carbon hybrid nanofibers with abundant mesopores and interconnected cavities is developed. Benefiting from the unique topology, the resulted hybrid catalyst exhibits excellent bifunctional electrocatalytic activities toward oxygen reduction/evolution reactions. Zinc–air battery based on this catalyst shows high power density and long cycle life.
doi_str_mv 10.1002/smll.202001743
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2403036513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2403036513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4103-d09ee2a26136d30e1f6db3ea5422dd6e6d7222568400a7a51c522fec00450ae73</originalsourceid><addsrcrecordid>eNqFkTFvFDEQhS0EIiGhpUSWaNLcMbZ3vbkynBIu0kEQgXrltWeDI6992F6F7ZD4A_xGfgk-XbhIaahmiu89zZtHyCsGcwbA36bBuTkHDsCaSjwhh0wyMZOnfPF0vzM4IC9SugUQjFfNc3IgeAWS1XBIfp3R1ThYY_P05-fvS29GjYZ-DD7jsHEqW39DP4cxI83hTkVDVxajivqb1crRTyGGMdGlil3w9MJ2GOlq6qI1tA-Rnve91RZ9pu9sP3qdbfBFdfVjukFfVFm5Kdl0TJ71yiV8eT-PyNeL8y_L1Wx99f5yebae6YqBmBlYIHLFSyhpBCDrpekEqrri3BiJ0jSc81qeVgCqUTXTNec9aoCqBoWNOCInO99NDN9HTLkdbNLonPJYYrTlKQKErJko6JtH6G0YYzl-SzEOTNQNK9R8R-kYUorYt5toBxWnlkG7rafd1tPu6ymC1_e2Yzeg2eP_-ijAYgfcWYfTf-za6w_r9YP5X7nancA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412013571</pqid></control><display><type>article</type><title>A Humidity‐Induced Nontemplating Route toward Hierarchical Porous Carbon Fiber Hybrid for Efficient Bifunctional Oxygen Catalysis</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Tian, Lidong ; Ji, Dongxiao ; Zhang, Shan ; He, Xiaowei ; Ramakrishna, Seeram ; Zhang, Qiuyu</creator><creatorcontrib>Tian, Lidong ; Ji, Dongxiao ; Zhang, Shan ; He, Xiaowei ; Ramakrishna, Seeram ; Zhang, Qiuyu</creatorcontrib><description>Hierarchical porous carbons (HPCs) are highly efficient supports for various remarkable catalytic systems. However, templates are commonly utilized for the preparation of HPCs, and the postremoval of the templates is uneconomical, time‐consuming, and harmful for the environment in most cases. Herein, a new humidity‐induced nontemplating strategy is developed to prepare 1D HPC with rich topologies and interconnected cavities for catalysis and energy storage applications. Porous electrospun nanofibers as calcination precursors are prepared via a humidity‐induced phase separation strategy. A nitrogen‐doped hierarchical porous carbon nanofiber (HPCNF), loading Co/Co3O4 hetero‐nanoparticles as exemplary nonprecious‐metal active substance (Co/Co3O4@HPCNF), is fabricated through the subsequent hydrothermal and pyrolysis treatment. The internal mesopore and cavity structure can be simply controlled by varying environment humidity during the electrospinning process. Benefiting from the unique topology, Co/Co3O4@HPCNF exhibits superior bifunctional activity when being used as electrocatalysts for oxygen reduction/evolution reactions. Moreover, the hybrid catalyst also demonstrates a remarkable power density of 102.5 mW cm−2, a high capacity of 748.5 mAh gZn−1, and long cycle life in Zinc–air batteries. The developed approach offers a facile template‐free route for the preparation of HPCNF hybrid and can be extended to other members of the large polymer family for catalyst design and energy storage applications. A new humidity‐induced nontemplating strategy for the general synthesis of hierarchical carbon hybrid nanofibers with abundant mesopores and interconnected cavities is developed. Benefiting from the unique topology, the resulted hybrid catalyst exhibits excellent bifunctional electrocatalytic activities toward oxygen reduction/evolution reactions. Zinc–air battery based on this catalyst shows high power density and long cycle life.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202001743</identifier><identifier>PMID: 32406150</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>bifunctional catalysts ; Carbon fibers ; Catalysis ; Catalysts ; Cobalt oxides ; Electrocatalysts ; electrospinning ; Energy storage ; hierarchical porous carbons ; Holes ; Humidity ; Metal air batteries ; Nanofibers ; Nanoparticles ; Nanotechnology ; Phase separation ; Pyrolysis ; template‐free strategy ; Topology ; Zinc-oxygen batteries ; zinc–air batteries</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2020-06, Vol.16 (23), p.e2001743-n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4103-d09ee2a26136d30e1f6db3ea5422dd6e6d7222568400a7a51c522fec00450ae73</citedby><cites>FETCH-LOGICAL-c4103-d09ee2a26136d30e1f6db3ea5422dd6e6d7222568400a7a51c522fec00450ae73</cites><orcidid>0000-0002-5255-7076 ; 0000-0001-8479-8686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202001743$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202001743$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32406150$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tian, Lidong</creatorcontrib><creatorcontrib>Ji, Dongxiao</creatorcontrib><creatorcontrib>Zhang, Shan</creatorcontrib><creatorcontrib>He, Xiaowei</creatorcontrib><creatorcontrib>Ramakrishna, Seeram</creatorcontrib><creatorcontrib>Zhang, Qiuyu</creatorcontrib><title>A Humidity‐Induced Nontemplating Route toward Hierarchical Porous Carbon Fiber Hybrid for Efficient Bifunctional Oxygen Catalysis</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Hierarchical porous carbons (HPCs) are highly efficient supports for various remarkable catalytic systems. However, templates are commonly utilized for the preparation of HPCs, and the postremoval of the templates is uneconomical, time‐consuming, and harmful for the environment in most cases. Herein, a new humidity‐induced nontemplating strategy is developed to prepare 1D HPC with rich topologies and interconnected cavities for catalysis and energy storage applications. Porous electrospun nanofibers as calcination precursors are prepared via a humidity‐induced phase separation strategy. A nitrogen‐doped hierarchical porous carbon nanofiber (HPCNF), loading Co/Co3O4 hetero‐nanoparticles as exemplary nonprecious‐metal active substance (Co/Co3O4@HPCNF), is fabricated through the subsequent hydrothermal and pyrolysis treatment. The internal mesopore and cavity structure can be simply controlled by varying environment humidity during the electrospinning process. Benefiting from the unique topology, Co/Co3O4@HPCNF exhibits superior bifunctional activity when being used as electrocatalysts for oxygen reduction/evolution reactions. Moreover, the hybrid catalyst also demonstrates a remarkable power density of 102.5 mW cm−2, a high capacity of 748.5 mAh gZn−1, and long cycle life in Zinc–air batteries. The developed approach offers a facile template‐free route for the preparation of HPCNF hybrid and can be extended to other members of the large polymer family for catalyst design and energy storage applications. A new humidity‐induced nontemplating strategy for the general synthesis of hierarchical carbon hybrid nanofibers with abundant mesopores and interconnected cavities is developed. Benefiting from the unique topology, the resulted hybrid catalyst exhibits excellent bifunctional electrocatalytic activities toward oxygen reduction/evolution reactions. Zinc–air battery based on this catalyst shows high power density and long cycle life.</description><subject>bifunctional catalysts</subject><subject>Carbon fibers</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Cobalt oxides</subject><subject>Electrocatalysts</subject><subject>electrospinning</subject><subject>Energy storage</subject><subject>hierarchical porous carbons</subject><subject>Holes</subject><subject>Humidity</subject><subject>Metal air batteries</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Phase separation</subject><subject>Pyrolysis</subject><subject>template‐free strategy</subject><subject>Topology</subject><subject>Zinc-oxygen batteries</subject><subject>zinc–air batteries</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkTFvFDEQhS0EIiGhpUSWaNLcMbZ3vbkynBIu0kEQgXrltWeDI6992F6F7ZD4A_xGfgk-XbhIaahmiu89zZtHyCsGcwbA36bBuTkHDsCaSjwhh0wyMZOnfPF0vzM4IC9SugUQjFfNc3IgeAWS1XBIfp3R1ThYY_P05-fvS29GjYZ-DD7jsHEqW39DP4cxI83hTkVDVxajivqb1crRTyGGMdGlil3w9MJ2GOlq6qI1tA-Rnve91RZ9pu9sP3qdbfBFdfVjukFfVFm5Kdl0TJ71yiV8eT-PyNeL8y_L1Wx99f5yebae6YqBmBlYIHLFSyhpBCDrpekEqrri3BiJ0jSc81qeVgCqUTXTNec9aoCqBoWNOCInO99NDN9HTLkdbNLonPJYYrTlKQKErJko6JtH6G0YYzl-SzEOTNQNK9R8R-kYUorYt5toBxWnlkG7rafd1tPu6ymC1_e2Yzeg2eP_-ijAYgfcWYfTf-za6w_r9YP5X7nancA</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Tian, Lidong</creator><creator>Ji, Dongxiao</creator><creator>Zhang, Shan</creator><creator>He, Xiaowei</creator><creator>Ramakrishna, Seeram</creator><creator>Zhang, Qiuyu</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5255-7076</orcidid><orcidid>https://orcid.org/0000-0001-8479-8686</orcidid></search><sort><creationdate>20200601</creationdate><title>A Humidity‐Induced Nontemplating Route toward Hierarchical Porous Carbon Fiber Hybrid for Efficient Bifunctional Oxygen Catalysis</title><author>Tian, Lidong ; Ji, Dongxiao ; Zhang, Shan ; He, Xiaowei ; Ramakrishna, Seeram ; Zhang, Qiuyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4103-d09ee2a26136d30e1f6db3ea5422dd6e6d7222568400a7a51c522fec00450ae73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>bifunctional catalysts</topic><topic>Carbon fibers</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Cobalt oxides</topic><topic>Electrocatalysts</topic><topic>electrospinning</topic><topic>Energy storage</topic><topic>hierarchical porous carbons</topic><topic>Holes</topic><topic>Humidity</topic><topic>Metal air batteries</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Phase separation</topic><topic>Pyrolysis</topic><topic>template‐free strategy</topic><topic>Topology</topic><topic>Zinc-oxygen batteries</topic><topic>zinc–air batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Lidong</creatorcontrib><creatorcontrib>Ji, Dongxiao</creatorcontrib><creatorcontrib>Zhang, Shan</creatorcontrib><creatorcontrib>He, Xiaowei</creatorcontrib><creatorcontrib>Ramakrishna, Seeram</creatorcontrib><creatorcontrib>Zhang, Qiuyu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Lidong</au><au>Ji, Dongxiao</au><au>Zhang, Shan</au><au>He, Xiaowei</au><au>Ramakrishna, Seeram</au><au>Zhang, Qiuyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Humidity‐Induced Nontemplating Route toward Hierarchical Porous Carbon Fiber Hybrid for Efficient Bifunctional Oxygen Catalysis</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>16</volume><issue>23</issue><spage>e2001743</spage><epage>n/a</epage><pages>e2001743-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Hierarchical porous carbons (HPCs) are highly efficient supports for various remarkable catalytic systems. However, templates are commonly utilized for the preparation of HPCs, and the postremoval of the templates is uneconomical, time‐consuming, and harmful for the environment in most cases. Herein, a new humidity‐induced nontemplating strategy is developed to prepare 1D HPC with rich topologies and interconnected cavities for catalysis and energy storage applications. Porous electrospun nanofibers as calcination precursors are prepared via a humidity‐induced phase separation strategy. A nitrogen‐doped hierarchical porous carbon nanofiber (HPCNF), loading Co/Co3O4 hetero‐nanoparticles as exemplary nonprecious‐metal active substance (Co/Co3O4@HPCNF), is fabricated through the subsequent hydrothermal and pyrolysis treatment. The internal mesopore and cavity structure can be simply controlled by varying environment humidity during the electrospinning process. Benefiting from the unique topology, Co/Co3O4@HPCNF exhibits superior bifunctional activity when being used as electrocatalysts for oxygen reduction/evolution reactions. Moreover, the hybrid catalyst also demonstrates a remarkable power density of 102.5 mW cm−2, a high capacity of 748.5 mAh gZn−1, and long cycle life in Zinc–air batteries. The developed approach offers a facile template‐free route for the preparation of HPCNF hybrid and can be extended to other members of the large polymer family for catalyst design and energy storage applications. A new humidity‐induced nontemplating strategy for the general synthesis of hierarchical carbon hybrid nanofibers with abundant mesopores and interconnected cavities is developed. Benefiting from the unique topology, the resulted hybrid catalyst exhibits excellent bifunctional electrocatalytic activities toward oxygen reduction/evolution reactions. Zinc–air battery based on this catalyst shows high power density and long cycle life.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32406150</pmid><doi>10.1002/smll.202001743</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5255-7076</orcidid><orcidid>https://orcid.org/0000-0001-8479-8686</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2020-06, Vol.16 (23), p.e2001743-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2403036513
source Wiley Online Library - AutoHoldings Journals
subjects bifunctional catalysts
Carbon fibers
Catalysis
Catalysts
Cobalt oxides
Electrocatalysts
electrospinning
Energy storage
hierarchical porous carbons
Holes
Humidity
Metal air batteries
Nanofibers
Nanoparticles
Nanotechnology
Phase separation
Pyrolysis
template‐free strategy
Topology
Zinc-oxygen batteries
zinc–air batteries
title A Humidity‐Induced Nontemplating Route toward Hierarchical Porous Carbon Fiber Hybrid for Efficient Bifunctional Oxygen Catalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A09%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Humidity%E2%80%90Induced%20Nontemplating%20Route%20toward%20Hierarchical%20Porous%20Carbon%20Fiber%20Hybrid%20for%20Efficient%20Bifunctional%20Oxygen%20Catalysis&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Tian,%20Lidong&rft.date=2020-06-01&rft.volume=16&rft.issue=23&rft.spage=e2001743&rft.epage=n/a&rft.pages=e2001743-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202001743&rft_dat=%3Cproquest_cross%3E2403036513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412013571&rft_id=info:pmid/32406150&rfr_iscdi=true