Deep-Learning Image Reconstruction for Real-Time Photoacoustic System

Recent advances in photoacoustic (PA) imaging have enabled detailed images of microvascular structure and quantitative measurement of blood oxygenation or perfusion. Standard reconstruction methods for PA imaging are based on solving an inverse problem using appropriate signal and system models. For...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2020-11, Vol.39 (11), p.3379-3390
Hauptverfasser: Kim, MinWoo, Jeng, Geng-Shi, Pelivanov, Ivan, O'Donnell, Matthew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3390
container_issue 11
container_start_page 3379
container_title IEEE transactions on medical imaging
container_volume 39
creator Kim, MinWoo
Jeng, Geng-Shi
Pelivanov, Ivan
O'Donnell, Matthew
description Recent advances in photoacoustic (PA) imaging have enabled detailed images of microvascular structure and quantitative measurement of blood oxygenation or perfusion. Standard reconstruction methods for PA imaging are based on solving an inverse problem using appropriate signal and system models. For handheld scanners, however, the ill-posed conditions of limited detection view and bandwidth yield low image contrast and severe structure loss in most instances. In this paper, we propose a practical reconstruction method based on a deep convolutional neural network (CNN) to overcome those problems. It is designed for real-time clinical applications and trained by large-scale synthetic data mimicking typical microvessel networks. Experimental results using synthetic and real datasets confirm that the deep-learning approach provides superior reconstructions compared to conventional methods.
doi_str_mv 10.1109/TMI.2020.2993835
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2401825907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9091172</ieee_id><sourcerecordid>2456531474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-4c160f6d4d5689d67eb50bfd5045dada2b2f86e18391371309b38934456548bf3</originalsourceid><addsrcrecordid>eNpdkV1rFDEUhoModlu9FwQZ8KY3sz35nORGkFp1YYuiK3gXMjNntikzk20yI_TfN2XXRXsVyHnOy3l5CHlDYUkpmIvN9WrJgMGSGcM1l8_IgkqpSybF7-dkAazSJYBiJ-Q0pVsAKiSYl-SEM24UVGpBrj4h7so1ujj6cVusBrfF4gc2YUxTnJvJh7HoQsxfri83fsDi-02YgmvCnCbfFD_v04TDK_Kic33C14f3jPz6fLW5_Fquv31ZXX5cl40wdCpFQxV0qhWtVNq0qsJaQt21EoRsXetYzTqtkGpuKK8oB1NzbbgQUkmh646fkQ_73N1cD9g2OE7R9XYX_eDivQ3O2_8no7-x2_DHamkE5TIHnB8CYribMU128KnBvncj5kaWCaCaSQNVRt8_QW_DHMdcL1P5IE5FJTIFe6qJIaWI3fEYCvbRkc2O7KMje3CUV979W-K48FdKBt7uAY-Ix7EBQ2nF-ANRYZTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456531474</pqid></control><display><type>article</type><title>Deep-Learning Image Reconstruction for Real-Time Photoacoustic System</title><source>IEEE Electronic Library (IEL)</source><creator>Kim, MinWoo ; Jeng, Geng-Shi ; Pelivanov, Ivan ; O'Donnell, Matthew</creator><creatorcontrib>Kim, MinWoo ; Jeng, Geng-Shi ; Pelivanov, Ivan ; O'Donnell, Matthew</creatorcontrib><description>Recent advances in photoacoustic (PA) imaging have enabled detailed images of microvascular structure and quantitative measurement of blood oxygenation or perfusion. Standard reconstruction methods for PA imaging are based on solving an inverse problem using appropriate signal and system models. For handheld scanners, however, the ill-posed conditions of limited detection view and bandwidth yield low image contrast and severe structure loss in most instances. In this paper, we propose a practical reconstruction method based on a deep convolutional neural network (CNN) to overcome those problems. It is designed for real-time clinical applications and trained by large-scale synthetic data mimicking typical microvessel networks. Experimental results using synthetic and real datasets confirm that the deep-learning approach provides superior reconstructions compared to conventional methods.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2020.2993835</identifier><identifier>PMID: 32396076</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Bandwidth ; Computer Systems ; convolutional neural network ; Deep Learning ; Delays ; Geometry ; Image contrast ; Image processing ; Image Processing, Computer-Assisted ; Image reconstruction ; Imaging ; Inverse problems ; Microvasculature ; Mimicry ; Neural networks ; Neural Networks, Computer ; Oxygenation ; Perfusion ; Photoacoustic imaging ; Real time ; Real-time systems ; reconstruction ; Scanners</subject><ispartof>IEEE transactions on medical imaging, 2020-11, Vol.39 (11), p.3379-3390</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-4c160f6d4d5689d67eb50bfd5045dada2b2f86e18391371309b38934456548bf3</citedby><cites>FETCH-LOGICAL-c491t-4c160f6d4d5689d67eb50bfd5045dada2b2f86e18391371309b38934456548bf3</cites><orcidid>0000-0001-7547-2596 ; 0000-0003-4105-573X ; 0000-0001-8780-7613</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9091172$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9091172$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32396076$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, MinWoo</creatorcontrib><creatorcontrib>Jeng, Geng-Shi</creatorcontrib><creatorcontrib>Pelivanov, Ivan</creatorcontrib><creatorcontrib>O'Donnell, Matthew</creatorcontrib><title>Deep-Learning Image Reconstruction for Real-Time Photoacoustic System</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Recent advances in photoacoustic (PA) imaging have enabled detailed images of microvascular structure and quantitative measurement of blood oxygenation or perfusion. Standard reconstruction methods for PA imaging are based on solving an inverse problem using appropriate signal and system models. For handheld scanners, however, the ill-posed conditions of limited detection view and bandwidth yield low image contrast and severe structure loss in most instances. In this paper, we propose a practical reconstruction method based on a deep convolutional neural network (CNN) to overcome those problems. It is designed for real-time clinical applications and trained by large-scale synthetic data mimicking typical microvessel networks. Experimental results using synthetic and real datasets confirm that the deep-learning approach provides superior reconstructions compared to conventional methods.</description><subject>Artificial neural networks</subject><subject>Bandwidth</subject><subject>Computer Systems</subject><subject>convolutional neural network</subject><subject>Deep Learning</subject><subject>Delays</subject><subject>Geometry</subject><subject>Image contrast</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Inverse problems</subject><subject>Microvasculature</subject><subject>Mimicry</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Oxygenation</subject><subject>Perfusion</subject><subject>Photoacoustic imaging</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>reconstruction</subject><subject>Scanners</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkV1rFDEUhoModlu9FwQZ8KY3sz35nORGkFp1YYuiK3gXMjNntikzk20yI_TfN2XXRXsVyHnOy3l5CHlDYUkpmIvN9WrJgMGSGcM1l8_IgkqpSybF7-dkAazSJYBiJ-Q0pVsAKiSYl-SEM24UVGpBrj4h7so1ujj6cVusBrfF4gc2YUxTnJvJh7HoQsxfri83fsDi-02YgmvCnCbfFD_v04TDK_Kic33C14f3jPz6fLW5_Fquv31ZXX5cl40wdCpFQxV0qhWtVNq0qsJaQt21EoRsXetYzTqtkGpuKK8oB1NzbbgQUkmh646fkQ_73N1cD9g2OE7R9XYX_eDivQ3O2_8no7-x2_DHamkE5TIHnB8CYribMU128KnBvncj5kaWCaCaSQNVRt8_QW_DHMdcL1P5IE5FJTIFe6qJIaWI3fEYCvbRkc2O7KMje3CUV979W-K48FdKBt7uAY-Ix7EBQ2nF-ANRYZTQ</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Kim, MinWoo</creator><creator>Jeng, Geng-Shi</creator><creator>Pelivanov, Ivan</creator><creator>O'Donnell, Matthew</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7547-2596</orcidid><orcidid>https://orcid.org/0000-0003-4105-573X</orcidid><orcidid>https://orcid.org/0000-0001-8780-7613</orcidid></search><sort><creationdate>20201101</creationdate><title>Deep-Learning Image Reconstruction for Real-Time Photoacoustic System</title><author>Kim, MinWoo ; Jeng, Geng-Shi ; Pelivanov, Ivan ; O'Donnell, Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-4c160f6d4d5689d67eb50bfd5045dada2b2f86e18391371309b38934456548bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Bandwidth</topic><topic>Computer Systems</topic><topic>convolutional neural network</topic><topic>Deep Learning</topic><topic>Delays</topic><topic>Geometry</topic><topic>Image contrast</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Inverse problems</topic><topic>Microvasculature</topic><topic>Mimicry</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Oxygenation</topic><topic>Perfusion</topic><topic>Photoacoustic imaging</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>reconstruction</topic><topic>Scanners</topic><toplevel>online_resources</toplevel><creatorcontrib>Kim, MinWoo</creatorcontrib><creatorcontrib>Jeng, Geng-Shi</creatorcontrib><creatorcontrib>Pelivanov, Ivan</creatorcontrib><creatorcontrib>O'Donnell, Matthew</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, MinWoo</au><au>Jeng, Geng-Shi</au><au>Pelivanov, Ivan</au><au>O'Donnell, Matthew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep-Learning Image Reconstruction for Real-Time Photoacoustic System</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>39</volume><issue>11</issue><spage>3379</spage><epage>3390</epage><pages>3379-3390</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Recent advances in photoacoustic (PA) imaging have enabled detailed images of microvascular structure and quantitative measurement of blood oxygenation or perfusion. Standard reconstruction methods for PA imaging are based on solving an inverse problem using appropriate signal and system models. For handheld scanners, however, the ill-posed conditions of limited detection view and bandwidth yield low image contrast and severe structure loss in most instances. In this paper, we propose a practical reconstruction method based on a deep convolutional neural network (CNN) to overcome those problems. It is designed for real-time clinical applications and trained by large-scale synthetic data mimicking typical microvessel networks. Experimental results using synthetic and real datasets confirm that the deep-learning approach provides superior reconstructions compared to conventional methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32396076</pmid><doi>10.1109/TMI.2020.2993835</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7547-2596</orcidid><orcidid>https://orcid.org/0000-0003-4105-573X</orcidid><orcidid>https://orcid.org/0000-0001-8780-7613</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2020-11, Vol.39 (11), p.3379-3390
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_miscellaneous_2401825907
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Bandwidth
Computer Systems
convolutional neural network
Deep Learning
Delays
Geometry
Image contrast
Image processing
Image Processing, Computer-Assisted
Image reconstruction
Imaging
Inverse problems
Microvasculature
Mimicry
Neural networks
Neural Networks, Computer
Oxygenation
Perfusion
Photoacoustic imaging
Real time
Real-time systems
reconstruction
Scanners
title Deep-Learning Image Reconstruction for Real-Time Photoacoustic System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep-Learning%20Image%20Reconstruction%20for%20Real-Time%20Photoacoustic%20System&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Kim,%20MinWoo&rft.date=2020-11-01&rft.volume=39&rft.issue=11&rft.spage=3379&rft.epage=3390&rft.pages=3379-3390&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2020.2993835&rft_dat=%3Cproquest_RIE%3E2456531474%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2456531474&rft_id=info:pmid/32396076&rft_ieee_id=9091172&rfr_iscdi=true