Deep-Learning Image Reconstruction for Real-Time Photoacoustic System
Recent advances in photoacoustic (PA) imaging have enabled detailed images of microvascular structure and quantitative measurement of blood oxygenation or perfusion. Standard reconstruction methods for PA imaging are based on solving an inverse problem using appropriate signal and system models. For...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2020-11, Vol.39 (11), p.3379-3390 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3390 |
---|---|
container_issue | 11 |
container_start_page | 3379 |
container_title | IEEE transactions on medical imaging |
container_volume | 39 |
creator | Kim, MinWoo Jeng, Geng-Shi Pelivanov, Ivan O'Donnell, Matthew |
description | Recent advances in photoacoustic (PA) imaging have enabled detailed images of microvascular structure and quantitative measurement of blood oxygenation or perfusion. Standard reconstruction methods for PA imaging are based on solving an inverse problem using appropriate signal and system models. For handheld scanners, however, the ill-posed conditions of limited detection view and bandwidth yield low image contrast and severe structure loss in most instances. In this paper, we propose a practical reconstruction method based on a deep convolutional neural network (CNN) to overcome those problems. It is designed for real-time clinical applications and trained by large-scale synthetic data mimicking typical microvessel networks. Experimental results using synthetic and real datasets confirm that the deep-learning approach provides superior reconstructions compared to conventional methods. |
doi_str_mv | 10.1109/TMI.2020.2993835 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2401825907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9091172</ieee_id><sourcerecordid>2456531474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-4c160f6d4d5689d67eb50bfd5045dada2b2f86e18391371309b38934456548bf3</originalsourceid><addsrcrecordid>eNpdkV1rFDEUhoModlu9FwQZ8KY3sz35nORGkFp1YYuiK3gXMjNntikzk20yI_TfN2XXRXsVyHnOy3l5CHlDYUkpmIvN9WrJgMGSGcM1l8_IgkqpSybF7-dkAazSJYBiJ-Q0pVsAKiSYl-SEM24UVGpBrj4h7so1ujj6cVusBrfF4gc2YUxTnJvJh7HoQsxfri83fsDi-02YgmvCnCbfFD_v04TDK_Kic33C14f3jPz6fLW5_Fquv31ZXX5cl40wdCpFQxV0qhWtVNq0qsJaQt21EoRsXetYzTqtkGpuKK8oB1NzbbgQUkmh646fkQ_73N1cD9g2OE7R9XYX_eDivQ3O2_8no7-x2_DHamkE5TIHnB8CYribMU128KnBvncj5kaWCaCaSQNVRt8_QW_DHMdcL1P5IE5FJTIFe6qJIaWI3fEYCvbRkc2O7KMje3CUV979W-K48FdKBt7uAY-Ix7EBQ2nF-ANRYZTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456531474</pqid></control><display><type>article</type><title>Deep-Learning Image Reconstruction for Real-Time Photoacoustic System</title><source>IEEE Electronic Library (IEL)</source><creator>Kim, MinWoo ; Jeng, Geng-Shi ; Pelivanov, Ivan ; O'Donnell, Matthew</creator><creatorcontrib>Kim, MinWoo ; Jeng, Geng-Shi ; Pelivanov, Ivan ; O'Donnell, Matthew</creatorcontrib><description>Recent advances in photoacoustic (PA) imaging have enabled detailed images of microvascular structure and quantitative measurement of blood oxygenation or perfusion. Standard reconstruction methods for PA imaging are based on solving an inverse problem using appropriate signal and system models. For handheld scanners, however, the ill-posed conditions of limited detection view and bandwidth yield low image contrast and severe structure loss in most instances. In this paper, we propose a practical reconstruction method based on a deep convolutional neural network (CNN) to overcome those problems. It is designed for real-time clinical applications and trained by large-scale synthetic data mimicking typical microvessel networks. Experimental results using synthetic and real datasets confirm that the deep-learning approach provides superior reconstructions compared to conventional methods.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2020.2993835</identifier><identifier>PMID: 32396076</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Bandwidth ; Computer Systems ; convolutional neural network ; Deep Learning ; Delays ; Geometry ; Image contrast ; Image processing ; Image Processing, Computer-Assisted ; Image reconstruction ; Imaging ; Inverse problems ; Microvasculature ; Mimicry ; Neural networks ; Neural Networks, Computer ; Oxygenation ; Perfusion ; Photoacoustic imaging ; Real time ; Real-time systems ; reconstruction ; Scanners</subject><ispartof>IEEE transactions on medical imaging, 2020-11, Vol.39 (11), p.3379-3390</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-4c160f6d4d5689d67eb50bfd5045dada2b2f86e18391371309b38934456548bf3</citedby><cites>FETCH-LOGICAL-c491t-4c160f6d4d5689d67eb50bfd5045dada2b2f86e18391371309b38934456548bf3</cites><orcidid>0000-0001-7547-2596 ; 0000-0003-4105-573X ; 0000-0001-8780-7613</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9091172$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9091172$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32396076$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, MinWoo</creatorcontrib><creatorcontrib>Jeng, Geng-Shi</creatorcontrib><creatorcontrib>Pelivanov, Ivan</creatorcontrib><creatorcontrib>O'Donnell, Matthew</creatorcontrib><title>Deep-Learning Image Reconstruction for Real-Time Photoacoustic System</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Recent advances in photoacoustic (PA) imaging have enabled detailed images of microvascular structure and quantitative measurement of blood oxygenation or perfusion. Standard reconstruction methods for PA imaging are based on solving an inverse problem using appropriate signal and system models. For handheld scanners, however, the ill-posed conditions of limited detection view and bandwidth yield low image contrast and severe structure loss in most instances. In this paper, we propose a practical reconstruction method based on a deep convolutional neural network (CNN) to overcome those problems. It is designed for real-time clinical applications and trained by large-scale synthetic data mimicking typical microvessel networks. Experimental results using synthetic and real datasets confirm that the deep-learning approach provides superior reconstructions compared to conventional methods.</description><subject>Artificial neural networks</subject><subject>Bandwidth</subject><subject>Computer Systems</subject><subject>convolutional neural network</subject><subject>Deep Learning</subject><subject>Delays</subject><subject>Geometry</subject><subject>Image contrast</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Inverse problems</subject><subject>Microvasculature</subject><subject>Mimicry</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Oxygenation</subject><subject>Perfusion</subject><subject>Photoacoustic imaging</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>reconstruction</subject><subject>Scanners</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkV1rFDEUhoModlu9FwQZ8KY3sz35nORGkFp1YYuiK3gXMjNntikzk20yI_TfN2XXRXsVyHnOy3l5CHlDYUkpmIvN9WrJgMGSGcM1l8_IgkqpSybF7-dkAazSJYBiJ-Q0pVsAKiSYl-SEM24UVGpBrj4h7so1ujj6cVusBrfF4gc2YUxTnJvJh7HoQsxfri83fsDi-02YgmvCnCbfFD_v04TDK_Kic33C14f3jPz6fLW5_Fquv31ZXX5cl40wdCpFQxV0qhWtVNq0qsJaQt21EoRsXetYzTqtkGpuKK8oB1NzbbgQUkmh646fkQ_73N1cD9g2OE7R9XYX_eDivQ3O2_8no7-x2_DHamkE5TIHnB8CYribMU128KnBvncj5kaWCaCaSQNVRt8_QW_DHMdcL1P5IE5FJTIFe6qJIaWI3fEYCvbRkc2O7KMje3CUV979W-K48FdKBt7uAY-Ix7EBQ2nF-ANRYZTQ</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Kim, MinWoo</creator><creator>Jeng, Geng-Shi</creator><creator>Pelivanov, Ivan</creator><creator>O'Donnell, Matthew</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7547-2596</orcidid><orcidid>https://orcid.org/0000-0003-4105-573X</orcidid><orcidid>https://orcid.org/0000-0001-8780-7613</orcidid></search><sort><creationdate>20201101</creationdate><title>Deep-Learning Image Reconstruction for Real-Time Photoacoustic System</title><author>Kim, MinWoo ; Jeng, Geng-Shi ; Pelivanov, Ivan ; O'Donnell, Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-4c160f6d4d5689d67eb50bfd5045dada2b2f86e18391371309b38934456548bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Bandwidth</topic><topic>Computer Systems</topic><topic>convolutional neural network</topic><topic>Deep Learning</topic><topic>Delays</topic><topic>Geometry</topic><topic>Image contrast</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Inverse problems</topic><topic>Microvasculature</topic><topic>Mimicry</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Oxygenation</topic><topic>Perfusion</topic><topic>Photoacoustic imaging</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>reconstruction</topic><topic>Scanners</topic><toplevel>online_resources</toplevel><creatorcontrib>Kim, MinWoo</creatorcontrib><creatorcontrib>Jeng, Geng-Shi</creatorcontrib><creatorcontrib>Pelivanov, Ivan</creatorcontrib><creatorcontrib>O'Donnell, Matthew</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, MinWoo</au><au>Jeng, Geng-Shi</au><au>Pelivanov, Ivan</au><au>O'Donnell, Matthew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep-Learning Image Reconstruction for Real-Time Photoacoustic System</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>39</volume><issue>11</issue><spage>3379</spage><epage>3390</epage><pages>3379-3390</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Recent advances in photoacoustic (PA) imaging have enabled detailed images of microvascular structure and quantitative measurement of blood oxygenation or perfusion. Standard reconstruction methods for PA imaging are based on solving an inverse problem using appropriate signal and system models. For handheld scanners, however, the ill-posed conditions of limited detection view and bandwidth yield low image contrast and severe structure loss in most instances. In this paper, we propose a practical reconstruction method based on a deep convolutional neural network (CNN) to overcome those problems. It is designed for real-time clinical applications and trained by large-scale synthetic data mimicking typical microvessel networks. Experimental results using synthetic and real datasets confirm that the deep-learning approach provides superior reconstructions compared to conventional methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32396076</pmid><doi>10.1109/TMI.2020.2993835</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7547-2596</orcidid><orcidid>https://orcid.org/0000-0003-4105-573X</orcidid><orcidid>https://orcid.org/0000-0001-8780-7613</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2020-11, Vol.39 (11), p.3379-3390 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_proquest_miscellaneous_2401825907 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Bandwidth Computer Systems convolutional neural network Deep Learning Delays Geometry Image contrast Image processing Image Processing, Computer-Assisted Image reconstruction Imaging Inverse problems Microvasculature Mimicry Neural networks Neural Networks, Computer Oxygenation Perfusion Photoacoustic imaging Real time Real-time systems reconstruction Scanners |
title | Deep-Learning Image Reconstruction for Real-Time Photoacoustic System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep-Learning%20Image%20Reconstruction%20for%20Real-Time%20Photoacoustic%20System&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Kim,%20MinWoo&rft.date=2020-11-01&rft.volume=39&rft.issue=11&rft.spage=3379&rft.epage=3390&rft.pages=3379-3390&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2020.2993835&rft_dat=%3Cproquest_RIE%3E2456531474%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2456531474&rft_id=info:pmid/32396076&rft_ieee_id=9091172&rfr_iscdi=true |