Insights into the Polyhexamethylene Biguanide (PHMB) Mechanism of Action on Bacterial Membrane and DNA: A Molecular Dynamics Study

Polyhexamethylene biguanide (PHMB) is a cationic polymer with antimicrobial and antiviral properties. It has been commonly accepted that the antimicrobial activity is due to the ability of PHMB to perforate the bacterial phospholipid membrane leading ultimately to its death. In this study, we show b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2020-06, Vol.124 (22), p.4487-4497
Hauptverfasser: Sowlati-Hashjin, Shahin, Carbone, Paola, Karttunen, Mikko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4497
container_issue 22
container_start_page 4487
container_title The journal of physical chemistry. B
container_volume 124
creator Sowlati-Hashjin, Shahin
Carbone, Paola
Karttunen, Mikko
description Polyhexamethylene biguanide (PHMB) is a cationic polymer with antimicrobial and antiviral properties. It has been commonly accepted that the antimicrobial activity is due to the ability of PHMB to perforate the bacterial phospholipid membrane leading ultimately to its death. In this study, we show by the means of atomistic molecular dynamics (MD) simulations that, while the PHMB molecules attach to the surface of the phospholipid bilayer and partially penetrate it, they do not cause any pore formation at least within the microsecond simulation times. The polymers initially adsorb onto the membrane surface via the favorable electrostatic interactions between the phospholipid headgroups and the biguanide groups and then partially penetrate the membrane slightly disrupting its structure. This, however, does not lead to the formation of any pores. The microsecond-scale simulations reveal that it is unlikely for PHMB to spontaneously pass through the phospholipid membrane. Our findings suggest that PHMB translocation across the bilayer may take place through binding to the phospholipids. Once inside the cell, the polymer can effectively "bind" to DNA through extensive interactions with DNA phosphate backbone, which can potentially block the DNA replication process or activate DNA repair pathways.
doi_str_mv 10.1021/acs.jpcb.0c02609
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2401118451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2401118451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-65f340ab5bbb51c32fcc9524f7a3723fd221482ccefb74f67d9232f5af95da433</originalsourceid><addsrcrecordid>eNo9kMtLw0AQxhdRbK3ePcke6yF1n0njrQ-1hVYL6jlsNrvNljxqdgPm6l_ullZhhhmG7_sYfgDcYjTCiOAHIe1ot5fpCElEQhSfgT7mBAW-o_PTHmIU9sCVtTuECCfj8BL0KKExYhT1wc-ysmabOwtN5WrocgU3ddHl6luUyuVdoSoFp2bbispkCg43i_X0Hq6VzP3BlrDWcCKdqSvoayqkU40RhReUaSO8VVQZnL9OHuEErutCybYQDZx3lSiNtPDdtVl3DS60KKy6Oc0B-Hx--pgtgtXby3I2WQWSMuyCkGvKkEh5mqYcS0q0lDEnTEeCRoTqjBDMxkRKpdOI6TDKYuJFXOiYZ4JROgDDY-6-qb9aZV1SGitVUfg_69YmhCGM8Zhx7KXoKJVNbW2jdLJvTCmaLsEoOZBPPPnkQD45kfeWu1N6m5Yq-zf8oaa_2meA8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401118451</pqid></control><display><type>article</type><title>Insights into the Polyhexamethylene Biguanide (PHMB) Mechanism of Action on Bacterial Membrane and DNA: A Molecular Dynamics Study</title><source>MEDLINE</source><source>ACS Publications</source><creator>Sowlati-Hashjin, Shahin ; Carbone, Paola ; Karttunen, Mikko</creator><creatorcontrib>Sowlati-Hashjin, Shahin ; Carbone, Paola ; Karttunen, Mikko</creatorcontrib><description>Polyhexamethylene biguanide (PHMB) is a cationic polymer with antimicrobial and antiviral properties. It has been commonly accepted that the antimicrobial activity is due to the ability of PHMB to perforate the bacterial phospholipid membrane leading ultimately to its death. In this study, we show by the means of atomistic molecular dynamics (MD) simulations that, while the PHMB molecules attach to the surface of the phospholipid bilayer and partially penetrate it, they do not cause any pore formation at least within the microsecond simulation times. The polymers initially adsorb onto the membrane surface via the favorable electrostatic interactions between the phospholipid headgroups and the biguanide groups and then partially penetrate the membrane slightly disrupting its structure. This, however, does not lead to the formation of any pores. The microsecond-scale simulations reveal that it is unlikely for PHMB to spontaneously pass through the phospholipid membrane. Our findings suggest that PHMB translocation across the bilayer may take place through binding to the phospholipids. Once inside the cell, the polymer can effectively "bind" to DNA through extensive interactions with DNA phosphate backbone, which can potentially block the DNA replication process or activate DNA repair pathways.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.0c02609</identifier><identifier>PMID: 32390430</identifier><language>eng</language><publisher>United States</publisher><subject>Anti-Infective Agents ; Biguanides - pharmacology ; DNA ; Molecular Dynamics Simulation</subject><ispartof>The journal of physical chemistry. B, 2020-06, Vol.124 (22), p.4487-4497</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-65f340ab5bbb51c32fcc9524f7a3723fd221482ccefb74f67d9232f5af95da433</citedby><cites>FETCH-LOGICAL-c341t-65f340ab5bbb51c32fcc9524f7a3723fd221482ccefb74f67d9232f5af95da433</cites><orcidid>0000-0001-9927-8376 ; 0000-0002-8626-3033 ; 0000-0001-6968-1535</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2765,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32390430$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sowlati-Hashjin, Shahin</creatorcontrib><creatorcontrib>Carbone, Paola</creatorcontrib><creatorcontrib>Karttunen, Mikko</creatorcontrib><title>Insights into the Polyhexamethylene Biguanide (PHMB) Mechanism of Action on Bacterial Membrane and DNA: A Molecular Dynamics Study</title><title>The journal of physical chemistry. B</title><addtitle>J Phys Chem B</addtitle><description>Polyhexamethylene biguanide (PHMB) is a cationic polymer with antimicrobial and antiviral properties. It has been commonly accepted that the antimicrobial activity is due to the ability of PHMB to perforate the bacterial phospholipid membrane leading ultimately to its death. In this study, we show by the means of atomistic molecular dynamics (MD) simulations that, while the PHMB molecules attach to the surface of the phospholipid bilayer and partially penetrate it, they do not cause any pore formation at least within the microsecond simulation times. The polymers initially adsorb onto the membrane surface via the favorable electrostatic interactions between the phospholipid headgroups and the biguanide groups and then partially penetrate the membrane slightly disrupting its structure. This, however, does not lead to the formation of any pores. The microsecond-scale simulations reveal that it is unlikely for PHMB to spontaneously pass through the phospholipid membrane. Our findings suggest that PHMB translocation across the bilayer may take place through binding to the phospholipids. Once inside the cell, the polymer can effectively "bind" to DNA through extensive interactions with DNA phosphate backbone, which can potentially block the DNA replication process or activate DNA repair pathways.</description><subject>Anti-Infective Agents</subject><subject>Biguanides - pharmacology</subject><subject>DNA</subject><subject>Molecular Dynamics Simulation</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kMtLw0AQxhdRbK3ePcke6yF1n0njrQ-1hVYL6jlsNrvNljxqdgPm6l_ullZhhhmG7_sYfgDcYjTCiOAHIe1ot5fpCElEQhSfgT7mBAW-o_PTHmIU9sCVtTuECCfj8BL0KKExYhT1wc-ysmabOwtN5WrocgU3ddHl6luUyuVdoSoFp2bbispkCg43i_X0Hq6VzP3BlrDWcCKdqSvoayqkU40RhReUaSO8VVQZnL9OHuEErutCybYQDZx3lSiNtPDdtVl3DS60KKy6Oc0B-Hx--pgtgtXby3I2WQWSMuyCkGvKkEh5mqYcS0q0lDEnTEeCRoTqjBDMxkRKpdOI6TDKYuJFXOiYZ4JROgDDY-6-qb9aZV1SGitVUfg_69YmhCGM8Zhx7KXoKJVNbW2jdLJvTCmaLsEoOZBPPPnkQD45kfeWu1N6m5Yq-zf8oaa_2meA8Q</recordid><startdate>20200604</startdate><enddate>20200604</enddate><creator>Sowlati-Hashjin, Shahin</creator><creator>Carbone, Paola</creator><creator>Karttunen, Mikko</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9927-8376</orcidid><orcidid>https://orcid.org/0000-0002-8626-3033</orcidid><orcidid>https://orcid.org/0000-0001-6968-1535</orcidid></search><sort><creationdate>20200604</creationdate><title>Insights into the Polyhexamethylene Biguanide (PHMB) Mechanism of Action on Bacterial Membrane and DNA: A Molecular Dynamics Study</title><author>Sowlati-Hashjin, Shahin ; Carbone, Paola ; Karttunen, Mikko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-65f340ab5bbb51c32fcc9524f7a3723fd221482ccefb74f67d9232f5af95da433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anti-Infective Agents</topic><topic>Biguanides - pharmacology</topic><topic>DNA</topic><topic>Molecular Dynamics Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sowlati-Hashjin, Shahin</creatorcontrib><creatorcontrib>Carbone, Paola</creatorcontrib><creatorcontrib>Karttunen, Mikko</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sowlati-Hashjin, Shahin</au><au>Carbone, Paola</au><au>Karttunen, Mikko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into the Polyhexamethylene Biguanide (PHMB) Mechanism of Action on Bacterial Membrane and DNA: A Molecular Dynamics Study</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J Phys Chem B</addtitle><date>2020-06-04</date><risdate>2020</risdate><volume>124</volume><issue>22</issue><spage>4487</spage><epage>4497</epage><pages>4487-4497</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Polyhexamethylene biguanide (PHMB) is a cationic polymer with antimicrobial and antiviral properties. It has been commonly accepted that the antimicrobial activity is due to the ability of PHMB to perforate the bacterial phospholipid membrane leading ultimately to its death. In this study, we show by the means of atomistic molecular dynamics (MD) simulations that, while the PHMB molecules attach to the surface of the phospholipid bilayer and partially penetrate it, they do not cause any pore formation at least within the microsecond simulation times. The polymers initially adsorb onto the membrane surface via the favorable electrostatic interactions between the phospholipid headgroups and the biguanide groups and then partially penetrate the membrane slightly disrupting its structure. This, however, does not lead to the formation of any pores. The microsecond-scale simulations reveal that it is unlikely for PHMB to spontaneously pass through the phospholipid membrane. Our findings suggest that PHMB translocation across the bilayer may take place through binding to the phospholipids. Once inside the cell, the polymer can effectively "bind" to DNA through extensive interactions with DNA phosphate backbone, which can potentially block the DNA replication process or activate DNA repair pathways.</abstract><cop>United States</cop><pmid>32390430</pmid><doi>10.1021/acs.jpcb.0c02609</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9927-8376</orcidid><orcidid>https://orcid.org/0000-0002-8626-3033</orcidid><orcidid>https://orcid.org/0000-0001-6968-1535</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2020-06, Vol.124 (22), p.4487-4497
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_2401118451
source MEDLINE; ACS Publications
subjects Anti-Infective Agents
Biguanides - pharmacology
DNA
Molecular Dynamics Simulation
title Insights into the Polyhexamethylene Biguanide (PHMB) Mechanism of Action on Bacterial Membrane and DNA: A Molecular Dynamics Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A40%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20the%20Polyhexamethylene%20Biguanide%20(PHMB)%20Mechanism%20of%20Action%20on%20Bacterial%20Membrane%20and%20DNA:%20A%20Molecular%20Dynamics%20Study&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Sowlati-Hashjin,%20Shahin&rft.date=2020-06-04&rft.volume=124&rft.issue=22&rft.spage=4487&rft.epage=4497&rft.pages=4487-4497&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.0c02609&rft_dat=%3Cproquest_cross%3E2401118451%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2401118451&rft_id=info:pmid/32390430&rfr_iscdi=true