Bone forming ability of recombinant human collagen peptide granules applied with β‐tricalcium phosphate fine particles

Recombinant human collagen peptide, developed based on human collagen type I, contains an arginyl‐glycyl‐aspartic acid (RGD)‐rich motif to enhance cell behavior and is anticipated as a xeno‐free polymer material for use in tissue engineering. We fabricated granules containing recombinant human colla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2020-10, Vol.108 (7), p.3033-3044
Hauptverfasser: Furihata, Tomokazu, Miyaji, Hirofumi, Nishida, Erika, Kato, Akihito, Miyata, Saori, Shitomi, Kanako, Mayumi, Kayoko, Kanemoto, Yukimi, Sugaya, Tsutomu, Akasaka, Tsukasa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3044
container_issue 7
container_start_page 3033
container_title Journal of biomedical materials research. Part B, Applied biomaterials
container_volume 108
creator Furihata, Tomokazu
Miyaji, Hirofumi
Nishida, Erika
Kato, Akihito
Miyata, Saori
Shitomi, Kanako
Mayumi, Kayoko
Kanemoto, Yukimi
Sugaya, Tsutomu
Akasaka, Tsukasa
description Recombinant human collagen peptide, developed based on human collagen type I, contains an arginyl‐glycyl‐aspartic acid (RGD)‐rich motif to enhance cell behavior and is anticipated as a xeno‐free polymer material for use in tissue engineering. We fabricated granules containing recombinant human collagen peptide (RCP) applied with beta‐tricalcium phosphate fine particles (RCP/β‐TCP) as bone filling scaffold material and assessed the bone forming ability of RCP/β‐TCP. Recombinant peptide was thermal crosslinked and freeze‐dried to prepare RCP. An aqueous dispersion of β‐TCP fine particles was added to RCP to obtain RCP/β‐TCP. Subsequently, RCP/β‐TCP were characterized using scanning electron microscopy (SEM), energy dispersive X‐ray spectrometry (EDX), and cell culture assessments. Furthermore, RCP/β‐TCP were implanted into rat cranial bone defects for radiographic and histological evaluations. In SEM and EDX analyses of RCP/β‐TCP, β‐TCP particles dose‐dependently covered the surface of RCP. Cell culture tests showed that RCP/β‐TCP remarkably promoted proliferation and mRNA expression of various genes, such as integrin β1 and osteogenic markers, of osteoblastic MC3T3‐E1 cells. Histomorphometric assessment at 4 weeks showed that RCP/β‐TCP significantly promoted new skull bone formation compared to RCP (p 
doi_str_mv 10.1002/jbm.b.34632
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2400523058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2438879672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4412-1b4407fca800e877c500e078399f9e1e1dc46a8ed37c5a35b35e2919684c7b663</originalsourceid><addsrcrecordid>eNp90T1uFDEYBmALEZEQqOiRJRoktIv_xuMp2YhfBdFAbdmeb3a9mrGNPaNoO47AWThIDsFJYtgkBQWVLfnx-9l6EXpGyZoSwl7v7bS2ay4kZw_QGW0athKdog_v9y0_RY9L2VcsScMfoVPOuJJM0jN02MQAeIh58mGLjfWjnw84DjiDi5P1wYQZ75bJBOziOJotBJwgzb4HvM0mLCMUbFIaPfT4ys87fP3r94-fc_bOjM4vE067WNLOzHWKr6OSybN39dYTdDKYscDT2_UcfXv39uvFh9Xll_cfL95crpwQlK2oFYK0gzOKEFBt65q6klbxrhs6oEB7J6RR0PN6ZHhjeQOso51UwrVWSn6OXh5zU47fFyiznnxxUP8SIC5FM0FIwzhpVKUv_qH7uORQX1cVV6rtZMuqenVULsdSMgw6ZT-ZfNCU6D-N6NqItvpvI1U_v81c7AT9vb2roAJ2BFd-hMP_svSnzefNMfUGT8uZGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438879672</pqid></control><display><type>article</type><title>Bone forming ability of recombinant human collagen peptide granules applied with β‐tricalcium phosphate fine particles</title><source>Access via Wiley Online Library</source><creator>Furihata, Tomokazu ; Miyaji, Hirofumi ; Nishida, Erika ; Kato, Akihito ; Miyata, Saori ; Shitomi, Kanako ; Mayumi, Kayoko ; Kanemoto, Yukimi ; Sugaya, Tsutomu ; Akasaka, Tsukasa</creator><creatorcontrib>Furihata, Tomokazu ; Miyaji, Hirofumi ; Nishida, Erika ; Kato, Akihito ; Miyata, Saori ; Shitomi, Kanako ; Mayumi, Kayoko ; Kanemoto, Yukimi ; Sugaya, Tsutomu ; Akasaka, Tsukasa</creatorcontrib><description>Recombinant human collagen peptide, developed based on human collagen type I, contains an arginyl‐glycyl‐aspartic acid (RGD)‐rich motif to enhance cell behavior and is anticipated as a xeno‐free polymer material for use in tissue engineering. We fabricated granules containing recombinant human collagen peptide (RCP) applied with beta‐tricalcium phosphate fine particles (RCP/β‐TCP) as bone filling scaffold material and assessed the bone forming ability of RCP/β‐TCP. Recombinant peptide was thermal crosslinked and freeze‐dried to prepare RCP. An aqueous dispersion of β‐TCP fine particles was added to RCP to obtain RCP/β‐TCP. Subsequently, RCP/β‐TCP were characterized using scanning electron microscopy (SEM), energy dispersive X‐ray spectrometry (EDX), and cell culture assessments. Furthermore, RCP/β‐TCP were implanted into rat cranial bone defects for radiographic and histological evaluations. In SEM and EDX analyses of RCP/β‐TCP, β‐TCP particles dose‐dependently covered the surface of RCP. Cell culture tests showed that RCP/β‐TCP remarkably promoted proliferation and mRNA expression of various genes, such as integrin β1 and osteogenic markers, of osteoblastic MC3T3‐E1 cells. Histomorphometric assessment at 4 weeks showed that RCP/β‐TCP significantly promoted new skull bone formation compared to RCP (p &lt; 0.05) and control (no application) (p &lt; 0.01). Accordingly, these findings suggest RCP/β‐TCP possess bone forming capability and would be beneficial for bone tissue engineering therapy.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.34632</identifier><identifier>PMID: 32386261</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Aspartic acid ; Beta rays ; Biomedical materials ; bone filling material ; Bone growth ; Calcium phosphates ; Cell culture ; Collagen ; Collagen (type I) ; Crosslinking ; Gene expression ; Granular materials ; Human performance ; integrin β1 ; Materials research ; Materials science ; Osteoblasts ; Osteogenesis ; osteogenic differentiation ; Peptides ; Polymers ; rat skull ; recombinant peptide based on human collagen type I ; Scanning electron microscopy ; Spectrometry ; Tissue engineering ; Tricalcium phosphate</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2020-10, Vol.108 (7), p.3033-3044</ispartof><rights>2020 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4412-1b4407fca800e877c500e078399f9e1e1dc46a8ed37c5a35b35e2919684c7b663</citedby><cites>FETCH-LOGICAL-c4412-1b4407fca800e877c500e078399f9e1e1dc46a8ed37c5a35b35e2919684c7b663</cites><orcidid>0000-0002-1023-7680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.b.34632$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.b.34632$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32386261$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Furihata, Tomokazu</creatorcontrib><creatorcontrib>Miyaji, Hirofumi</creatorcontrib><creatorcontrib>Nishida, Erika</creatorcontrib><creatorcontrib>Kato, Akihito</creatorcontrib><creatorcontrib>Miyata, Saori</creatorcontrib><creatorcontrib>Shitomi, Kanako</creatorcontrib><creatorcontrib>Mayumi, Kayoko</creatorcontrib><creatorcontrib>Kanemoto, Yukimi</creatorcontrib><creatorcontrib>Sugaya, Tsutomu</creatorcontrib><creatorcontrib>Akasaka, Tsukasa</creatorcontrib><title>Bone forming ability of recombinant human collagen peptide granules applied with β‐tricalcium phosphate fine particles</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><description>Recombinant human collagen peptide, developed based on human collagen type I, contains an arginyl‐glycyl‐aspartic acid (RGD)‐rich motif to enhance cell behavior and is anticipated as a xeno‐free polymer material for use in tissue engineering. We fabricated granules containing recombinant human collagen peptide (RCP) applied with beta‐tricalcium phosphate fine particles (RCP/β‐TCP) as bone filling scaffold material and assessed the bone forming ability of RCP/β‐TCP. Recombinant peptide was thermal crosslinked and freeze‐dried to prepare RCP. An aqueous dispersion of β‐TCP fine particles was added to RCP to obtain RCP/β‐TCP. Subsequently, RCP/β‐TCP were characterized using scanning electron microscopy (SEM), energy dispersive X‐ray spectrometry (EDX), and cell culture assessments. Furthermore, RCP/β‐TCP were implanted into rat cranial bone defects for radiographic and histological evaluations. In SEM and EDX analyses of RCP/β‐TCP, β‐TCP particles dose‐dependently covered the surface of RCP. Cell culture tests showed that RCP/β‐TCP remarkably promoted proliferation and mRNA expression of various genes, such as integrin β1 and osteogenic markers, of osteoblastic MC3T3‐E1 cells. Histomorphometric assessment at 4 weeks showed that RCP/β‐TCP significantly promoted new skull bone formation compared to RCP (p &lt; 0.05) and control (no application) (p &lt; 0.01). Accordingly, these findings suggest RCP/β‐TCP possess bone forming capability and would be beneficial for bone tissue engineering therapy.</description><subject>Aspartic acid</subject><subject>Beta rays</subject><subject>Biomedical materials</subject><subject>bone filling material</subject><subject>Bone growth</subject><subject>Calcium phosphates</subject><subject>Cell culture</subject><subject>Collagen</subject><subject>Collagen (type I)</subject><subject>Crosslinking</subject><subject>Gene expression</subject><subject>Granular materials</subject><subject>Human performance</subject><subject>integrin β1</subject><subject>Materials research</subject><subject>Materials science</subject><subject>Osteoblasts</subject><subject>Osteogenesis</subject><subject>osteogenic differentiation</subject><subject>Peptides</subject><subject>Polymers</subject><subject>rat skull</subject><subject>recombinant peptide based on human collagen type I</subject><subject>Scanning electron microscopy</subject><subject>Spectrometry</subject><subject>Tissue engineering</subject><subject>Tricalcium phosphate</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90T1uFDEYBmALEZEQqOiRJRoktIv_xuMp2YhfBdFAbdmeb3a9mrGNPaNoO47AWThIDsFJYtgkBQWVLfnx-9l6EXpGyZoSwl7v7bS2ay4kZw_QGW0athKdog_v9y0_RY9L2VcsScMfoVPOuJJM0jN02MQAeIh58mGLjfWjnw84DjiDi5P1wYQZ75bJBOziOJotBJwgzb4HvM0mLCMUbFIaPfT4ys87fP3r94-fc_bOjM4vE067WNLOzHWKr6OSybN39dYTdDKYscDT2_UcfXv39uvFh9Xll_cfL95crpwQlK2oFYK0gzOKEFBt65q6klbxrhs6oEB7J6RR0PN6ZHhjeQOso51UwrVWSn6OXh5zU47fFyiznnxxUP8SIC5FM0FIwzhpVKUv_qH7uORQX1cVV6rtZMuqenVULsdSMgw6ZT-ZfNCU6D-N6NqItvpvI1U_v81c7AT9vb2roAJ2BFd-hMP_svSnzefNMfUGT8uZGw</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Furihata, Tomokazu</creator><creator>Miyaji, Hirofumi</creator><creator>Nishida, Erika</creator><creator>Kato, Akihito</creator><creator>Miyata, Saori</creator><creator>Shitomi, Kanako</creator><creator>Mayumi, Kayoko</creator><creator>Kanemoto, Yukimi</creator><creator>Sugaya, Tsutomu</creator><creator>Akasaka, Tsukasa</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1023-7680</orcidid></search><sort><creationdate>202010</creationdate><title>Bone forming ability of recombinant human collagen peptide granules applied with β‐tricalcium phosphate fine particles</title><author>Furihata, Tomokazu ; Miyaji, Hirofumi ; Nishida, Erika ; Kato, Akihito ; Miyata, Saori ; Shitomi, Kanako ; Mayumi, Kayoko ; Kanemoto, Yukimi ; Sugaya, Tsutomu ; Akasaka, Tsukasa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4412-1b4407fca800e877c500e078399f9e1e1dc46a8ed37c5a35b35e2919684c7b663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aspartic acid</topic><topic>Beta rays</topic><topic>Biomedical materials</topic><topic>bone filling material</topic><topic>Bone growth</topic><topic>Calcium phosphates</topic><topic>Cell culture</topic><topic>Collagen</topic><topic>Collagen (type I)</topic><topic>Crosslinking</topic><topic>Gene expression</topic><topic>Granular materials</topic><topic>Human performance</topic><topic>integrin β1</topic><topic>Materials research</topic><topic>Materials science</topic><topic>Osteoblasts</topic><topic>Osteogenesis</topic><topic>osteogenic differentiation</topic><topic>Peptides</topic><topic>Polymers</topic><topic>rat skull</topic><topic>recombinant peptide based on human collagen type I</topic><topic>Scanning electron microscopy</topic><topic>Spectrometry</topic><topic>Tissue engineering</topic><topic>Tricalcium phosphate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Furihata, Tomokazu</creatorcontrib><creatorcontrib>Miyaji, Hirofumi</creatorcontrib><creatorcontrib>Nishida, Erika</creatorcontrib><creatorcontrib>Kato, Akihito</creatorcontrib><creatorcontrib>Miyata, Saori</creatorcontrib><creatorcontrib>Shitomi, Kanako</creatorcontrib><creatorcontrib>Mayumi, Kayoko</creatorcontrib><creatorcontrib>Kanemoto, Yukimi</creatorcontrib><creatorcontrib>Sugaya, Tsutomu</creatorcontrib><creatorcontrib>Akasaka, Tsukasa</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Furihata, Tomokazu</au><au>Miyaji, Hirofumi</au><au>Nishida, Erika</au><au>Kato, Akihito</au><au>Miyata, Saori</au><au>Shitomi, Kanako</au><au>Mayumi, Kayoko</au><au>Kanemoto, Yukimi</au><au>Sugaya, Tsutomu</au><au>Akasaka, Tsukasa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bone forming ability of recombinant human collagen peptide granules applied with β‐tricalcium phosphate fine particles</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><date>2020-10</date><risdate>2020</risdate><volume>108</volume><issue>7</issue><spage>3033</spage><epage>3044</epage><pages>3033-3044</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>Recombinant human collagen peptide, developed based on human collagen type I, contains an arginyl‐glycyl‐aspartic acid (RGD)‐rich motif to enhance cell behavior and is anticipated as a xeno‐free polymer material for use in tissue engineering. We fabricated granules containing recombinant human collagen peptide (RCP) applied with beta‐tricalcium phosphate fine particles (RCP/β‐TCP) as bone filling scaffold material and assessed the bone forming ability of RCP/β‐TCP. Recombinant peptide was thermal crosslinked and freeze‐dried to prepare RCP. An aqueous dispersion of β‐TCP fine particles was added to RCP to obtain RCP/β‐TCP. Subsequently, RCP/β‐TCP were characterized using scanning electron microscopy (SEM), energy dispersive X‐ray spectrometry (EDX), and cell culture assessments. Furthermore, RCP/β‐TCP were implanted into rat cranial bone defects for radiographic and histological evaluations. In SEM and EDX analyses of RCP/β‐TCP, β‐TCP particles dose‐dependently covered the surface of RCP. Cell culture tests showed that RCP/β‐TCP remarkably promoted proliferation and mRNA expression of various genes, such as integrin β1 and osteogenic markers, of osteoblastic MC3T3‐E1 cells. Histomorphometric assessment at 4 weeks showed that RCP/β‐TCP significantly promoted new skull bone formation compared to RCP (p &lt; 0.05) and control (no application) (p &lt; 0.01). Accordingly, these findings suggest RCP/β‐TCP possess bone forming capability and would be beneficial for bone tissue engineering therapy.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>32386261</pmid><doi>10.1002/jbm.b.34632</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1023-7680</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-4973
ispartof Journal of biomedical materials research. Part B, Applied biomaterials, 2020-10, Vol.108 (7), p.3033-3044
issn 1552-4973
1552-4981
language eng
recordid cdi_proquest_miscellaneous_2400523058
source Access via Wiley Online Library
subjects Aspartic acid
Beta rays
Biomedical materials
bone filling material
Bone growth
Calcium phosphates
Cell culture
Collagen
Collagen (type I)
Crosslinking
Gene expression
Granular materials
Human performance
integrin β1
Materials research
Materials science
Osteoblasts
Osteogenesis
osteogenic differentiation
Peptides
Polymers
rat skull
recombinant peptide based on human collagen type I
Scanning electron microscopy
Spectrometry
Tissue engineering
Tricalcium phosphate
title Bone forming ability of recombinant human collagen peptide granules applied with β‐tricalcium phosphate fine particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bone%20forming%20ability%20of%20recombinant%20human%20collagen%20peptide%20granules%20applied%20with%20%CE%B2%E2%80%90tricalcium%20phosphate%20fine%20particles&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Furihata,%20Tomokazu&rft.date=2020-10&rft.volume=108&rft.issue=7&rft.spage=3033&rft.epage=3044&rft.pages=3033-3044&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.34632&rft_dat=%3Cproquest_cross%3E2438879672%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438879672&rft_id=info:pmid/32386261&rfr_iscdi=true