Differential propagation of ripples along the proximodistal and septotemporal axes of dorsal CA1 of rats

The functional connectivity of the hippocampus with its primary cortical input, the entorhinal cortex, is organized topographically. In area CA1 of the hippocampus, this leads to different functional gradients along the proximodistal and septotemporal axes of spatial/sensory responsivity and spatial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hippocampus 2020-09, Vol.30 (9), p.970-986
Hauptverfasser: Kumar, Mekhala, Deshmukh, Sachin S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 986
container_issue 9
container_start_page 970
container_title Hippocampus
container_volume 30
creator Kumar, Mekhala
Deshmukh, Sachin S.
description The functional connectivity of the hippocampus with its primary cortical input, the entorhinal cortex, is organized topographically. In area CA1 of the hippocampus, this leads to different functional gradients along the proximodistal and septotemporal axes of spatial/sensory responsivity and spatial resolution respectively. CA1 ripples, a network phenomenon, allow us to test whether the hippocampal neural network shows corresponding gradients in functional connectivity along the two axes. We studied the occurrence and propagation of ripples across the entire proximodistal axis along with a comparable spatial range of the septotemporal axis of dorsal CA1. We observed that ripples could occur at any location, and their amplitudes were independent of the tetrode location along the proximodistal and septotemporal axes. When a ripple was detected on a particular tetrode (“reference tetrode”), however, the probability of cooccurrence of ripples and ripple amplitude observed on the other tetrodes decreased as a function of distance from the reference tetrode. This reduction was greater along the proximodistal axis than the septotemporal axis. Furthermore, we found that ripples propagate primarily along the proximodistal axis. Thus, over a spatial scale of ∼1.5 mm, the network is anisotropic along the two axes, complementing the topographically organized cortico‐hippocampal connections.
doi_str_mv 10.1002/hipo.23211
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2400514978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2400514978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3931-7a34ef9f16a115c6f37019056d543af3fe29e32bb735642a54ad0668829f44c83</originalsourceid><addsrcrecordid>eNp90E9LwzAYBvAgipvTix9ACl5E6Mybt03b45h_JgzmQc8la5Mto21q0qF-e9NtevDgKcnLLw8vDyGXQMdAKbtb69aMGTKAIzIEmqUhUI7H_T2mYcYRBuTMuQ2lADGlp2SADFPOEj4k63utlLSy6bSogtaaVqxEp00TGBVY3baVdIGoTLMKurXswaeuTald57loysDJtjOdrFtj-8mn5_5naazzz-kEdjmic-fkRInKyYvDOSJvjw-v01k4Xzw9TyfzsMAMIUwERlJlCrjwyxZcYUIhozEv4wiFQiVZJpEtlwnGPGIijkRJOU9TlqkoKlIckZt9rl_1fStdl9faFbKqRCPN1uUsojSGKEt6ev2HbszWNn47r5AjIqSJV7d7VVjjnJUqb62uhf3KgeZ9_3nff77r3-OrQ-R2Wcvyl_4U7gHswYeu5Nc_Ufns-WWxD_0G5jGPVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436333187</pqid></control><display><type>article</type><title>Differential propagation of ripples along the proximodistal and septotemporal axes of dorsal CA1 of rats</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kumar, Mekhala ; Deshmukh, Sachin S.</creator><creatorcontrib>Kumar, Mekhala ; Deshmukh, Sachin S.</creatorcontrib><description>The functional connectivity of the hippocampus with its primary cortical input, the entorhinal cortex, is organized topographically. In area CA1 of the hippocampus, this leads to different functional gradients along the proximodistal and septotemporal axes of spatial/sensory responsivity and spatial resolution respectively. CA1 ripples, a network phenomenon, allow us to test whether the hippocampal neural network shows corresponding gradients in functional connectivity along the two axes. We studied the occurrence and propagation of ripples across the entire proximodistal axis along with a comparable spatial range of the septotemporal axis of dorsal CA1. We observed that ripples could occur at any location, and their amplitudes were independent of the tetrode location along the proximodistal and septotemporal axes. When a ripple was detected on a particular tetrode (“reference tetrode”), however, the probability of cooccurrence of ripples and ripple amplitude observed on the other tetrodes decreased as a function of distance from the reference tetrode. This reduction was greater along the proximodistal axis than the septotemporal axis. Furthermore, we found that ripples propagate primarily along the proximodistal axis. Thus, over a spatial scale of ∼1.5 mm, the network is anisotropic along the two axes, complementing the topographically organized cortico‐hippocampal connections.</description><identifier>ISSN: 1050-9631</identifier><identifier>EISSN: 1098-1063</identifier><identifier>DOI: 10.1002/hipo.23211</identifier><identifier>PMID: 32386276</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Cortex (entorhinal) ; Cortex (somatosensory) ; Hippocampus ; lateral Entorhinal cortex (LEC) ; medial Entorhinal cortex (MEC) ; Neural networks ; proximodistal (transverse) axis ; ripples ; septotemporal (longitudinal) axis ; Spatial discrimination</subject><ispartof>Hippocampus, 2020-09, Vol.30 (9), p.970-986</ispartof><rights>2020 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3931-7a34ef9f16a115c6f37019056d543af3fe29e32bb735642a54ad0668829f44c83</citedby><cites>FETCH-LOGICAL-c3931-7a34ef9f16a115c6f37019056d543af3fe29e32bb735642a54ad0668829f44c83</cites><orcidid>0000-0002-9395-0376 ; 0000-0002-8421-4158</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhipo.23211$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhipo.23211$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32386276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Mekhala</creatorcontrib><creatorcontrib>Deshmukh, Sachin S.</creatorcontrib><title>Differential propagation of ripples along the proximodistal and septotemporal axes of dorsal CA1 of rats</title><title>Hippocampus</title><addtitle>Hippocampus</addtitle><description>The functional connectivity of the hippocampus with its primary cortical input, the entorhinal cortex, is organized topographically. In area CA1 of the hippocampus, this leads to different functional gradients along the proximodistal and septotemporal axes of spatial/sensory responsivity and spatial resolution respectively. CA1 ripples, a network phenomenon, allow us to test whether the hippocampal neural network shows corresponding gradients in functional connectivity along the two axes. We studied the occurrence and propagation of ripples across the entire proximodistal axis along with a comparable spatial range of the septotemporal axis of dorsal CA1. We observed that ripples could occur at any location, and their amplitudes were independent of the tetrode location along the proximodistal and septotemporal axes. When a ripple was detected on a particular tetrode (“reference tetrode”), however, the probability of cooccurrence of ripples and ripple amplitude observed on the other tetrodes decreased as a function of distance from the reference tetrode. This reduction was greater along the proximodistal axis than the septotemporal axis. Furthermore, we found that ripples propagate primarily along the proximodistal axis. Thus, over a spatial scale of ∼1.5 mm, the network is anisotropic along the two axes, complementing the topographically organized cortico‐hippocampal connections.</description><subject>Cortex (entorhinal)</subject><subject>Cortex (somatosensory)</subject><subject>Hippocampus</subject><subject>lateral Entorhinal cortex (LEC)</subject><subject>medial Entorhinal cortex (MEC)</subject><subject>Neural networks</subject><subject>proximodistal (transverse) axis</subject><subject>ripples</subject><subject>septotemporal (longitudinal) axis</subject><subject>Spatial discrimination</subject><issn>1050-9631</issn><issn>1098-1063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAYBvAgipvTix9ACl5E6Mybt03b45h_JgzmQc8la5Mto21q0qF-e9NtevDgKcnLLw8vDyGXQMdAKbtb69aMGTKAIzIEmqUhUI7H_T2mYcYRBuTMuQ2lADGlp2SADFPOEj4k63utlLSy6bSogtaaVqxEp00TGBVY3baVdIGoTLMKurXswaeuTald57loysDJtjOdrFtj-8mn5_5naazzz-kEdjmic-fkRInKyYvDOSJvjw-v01k4Xzw9TyfzsMAMIUwERlJlCrjwyxZcYUIhozEv4wiFQiVZJpEtlwnGPGIijkRJOU9TlqkoKlIckZt9rl_1fStdl9faFbKqRCPN1uUsojSGKEt6ev2HbszWNn47r5AjIqSJV7d7VVjjnJUqb62uhf3KgeZ9_3nff77r3-OrQ-R2Wcvyl_4U7gHswYeu5Nc_Ufns-WWxD_0G5jGPVg</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Kumar, Mekhala</creator><creator>Deshmukh, Sachin S.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9395-0376</orcidid><orcidid>https://orcid.org/0000-0002-8421-4158</orcidid></search><sort><creationdate>202009</creationdate><title>Differential propagation of ripples along the proximodistal and septotemporal axes of dorsal CA1 of rats</title><author>Kumar, Mekhala ; Deshmukh, Sachin S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3931-7a34ef9f16a115c6f37019056d543af3fe29e32bb735642a54ad0668829f44c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cortex (entorhinal)</topic><topic>Cortex (somatosensory)</topic><topic>Hippocampus</topic><topic>lateral Entorhinal cortex (LEC)</topic><topic>medial Entorhinal cortex (MEC)</topic><topic>Neural networks</topic><topic>proximodistal (transverse) axis</topic><topic>ripples</topic><topic>septotemporal (longitudinal) axis</topic><topic>Spatial discrimination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Mekhala</creatorcontrib><creatorcontrib>Deshmukh, Sachin S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Hippocampus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Mekhala</au><au>Deshmukh, Sachin S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential propagation of ripples along the proximodistal and septotemporal axes of dorsal CA1 of rats</atitle><jtitle>Hippocampus</jtitle><addtitle>Hippocampus</addtitle><date>2020-09</date><risdate>2020</risdate><volume>30</volume><issue>9</issue><spage>970</spage><epage>986</epage><pages>970-986</pages><issn>1050-9631</issn><eissn>1098-1063</eissn><abstract>The functional connectivity of the hippocampus with its primary cortical input, the entorhinal cortex, is organized topographically. In area CA1 of the hippocampus, this leads to different functional gradients along the proximodistal and septotemporal axes of spatial/sensory responsivity and spatial resolution respectively. CA1 ripples, a network phenomenon, allow us to test whether the hippocampal neural network shows corresponding gradients in functional connectivity along the two axes. We studied the occurrence and propagation of ripples across the entire proximodistal axis along with a comparable spatial range of the septotemporal axis of dorsal CA1. We observed that ripples could occur at any location, and their amplitudes were independent of the tetrode location along the proximodistal and septotemporal axes. When a ripple was detected on a particular tetrode (“reference tetrode”), however, the probability of cooccurrence of ripples and ripple amplitude observed on the other tetrodes decreased as a function of distance from the reference tetrode. This reduction was greater along the proximodistal axis than the septotemporal axis. Furthermore, we found that ripples propagate primarily along the proximodistal axis. Thus, over a spatial scale of ∼1.5 mm, the network is anisotropic along the two axes, complementing the topographically organized cortico‐hippocampal connections.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>32386276</pmid><doi>10.1002/hipo.23211</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9395-0376</orcidid><orcidid>https://orcid.org/0000-0002-8421-4158</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1050-9631
ispartof Hippocampus, 2020-09, Vol.30 (9), p.970-986
issn 1050-9631
1098-1063
language eng
recordid cdi_proquest_miscellaneous_2400514978
source Wiley Online Library Journals Frontfile Complete
subjects Cortex (entorhinal)
Cortex (somatosensory)
Hippocampus
lateral Entorhinal cortex (LEC)
medial Entorhinal cortex (MEC)
Neural networks
proximodistal (transverse) axis
ripples
septotemporal (longitudinal) axis
Spatial discrimination
title Differential propagation of ripples along the proximodistal and septotemporal axes of dorsal CA1 of rats
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20propagation%20of%20ripples%20along%20the%20proximodistal%20and%20septotemporal%20axes%20of%20dorsal%20CA1%20of%20rats&rft.jtitle=Hippocampus&rft.au=Kumar,%20Mekhala&rft.date=2020-09&rft.volume=30&rft.issue=9&rft.spage=970&rft.epage=986&rft.pages=970-986&rft.issn=1050-9631&rft.eissn=1098-1063&rft_id=info:doi/10.1002/hipo.23211&rft_dat=%3Cproquest_cross%3E2400514978%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436333187&rft_id=info:pmid/32386276&rfr_iscdi=true