Influence of contaminant exposure on the development of aerobic ETBE biodegradation potential in microbial communities from a gasoline-impacted aquifer

[Display omitted] •Aerobic biodegradation of ETBE at environmentally significant rates in groundwater.•Increased prominence of ethB gene-containing organisms following exposure to ETBE.•Preferential biodegradation of ETBE before MTBE in mixtures. Aerobic biodegradation of ethyl tert butyl ether (ETB...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2020-04, Vol.388, p.122022, Article 122022
Hauptverfasser: Nicholls, H.C.G., Mallinson, H.E.H., Rolfe, S.A., Hjort, M., Spence, M.J., Thornton, S.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 122022
container_title Journal of hazardous materials
container_volume 388
creator Nicholls, H.C.G.
Mallinson, H.E.H.
Rolfe, S.A.
Hjort, M.
Spence, M.J.
Thornton, S.F.
description [Display omitted] •Aerobic biodegradation of ETBE at environmentally significant rates in groundwater.•Increased prominence of ethB gene-containing organisms following exposure to ETBE.•Preferential biodegradation of ETBE before MTBE in mixtures. Aerobic biodegradation of ethyl tert butyl ether (ETBE) in a gasoline-impacted aquifer was investigated in laboratory microcosms containing groundwater and aquifer material from ETBE-impacted and non-impacted locations amended with either ETBE, or ETBE plus methyl tert butyl ether (MTBE). As sole substrate, ETBE was biodegraded (maximum rate of 0.54 day−1) without a lag in ETBE-impacted microcosms but with a lag of up to 66 days in non-impacted microcosms (maximum rate of 0.38 day−1). As co-substrate, ETBE was biodegraded preferentially (maximum rate of 0.25 and 0.99 day−1 in non-impacted and impacted microcosms, respectively) before MTBE (maximum rate of 0.24 and 0.36 day−1 in non-impacted and impacted microcosms, respectively). Further addition of ETBE and MTBE reduced lags and increased biodegradation rates. ethB gene copy numbers increased significantly (>100 fold) after exposure to ETBE, while overall cell numbers remained constant, suggesting that ethB-containing microorganisms come to dominate the microbial communities. Deep sequencing of 16S rRNA genes identified members of the Comamonadaceae family that increased in relative abundance upon exposure to ETBE. This study demonstrates the potential for ETBE biodegradation within the unsaturated and saturated zone, and that ETBE biodegrading capability is rapidly developed and maintained within the aquifer microbial community over extended timescales.
doi_str_mv 10.1016/j.jhazmat.2020.122022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2400489790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030438942030008X</els_id><sourcerecordid>2400489790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-cc6bc6a684d17ebc45188ad5f8a7e5526b18aca1a700b3aa32f0ee678502d38d3</originalsourceid><addsrcrecordid>eNqFkc1uFDEMgCMEokvhEUA5cpklP_OTPSGoFqhUiUs5R57E02Y1SaZJpiq8CK9LVrtw5WTZ_mzL-gh5y9mWM95_OGwP9_DLQ9kKJmpN1CCekQ1Xg2yklP1zsmGStY1Uu_aCvMr5wBjjQ9e-JBeS73ohON-Q39dhmlcMBmmcqImhgHcBQqH4tMS8ploPtNwjtfiIc1w81l5FAVMcnaH72897Orpo8S6BheIqvsRSKQczdYF6Z45kTUz0fg2uOMx0StFToHeQ4-wCNs4vYApaCg-rmzC9Ji8mmDO-OcdL8uPL_vbqW3Pz_ev11aebxrRtVxpj-tH00KvW8gFH03ZcKbDdpGDArhP9yBUY4DAwNkoAKSaG2A-qY8JKZeUleX_au6T4sGIu2rtscJ4hYFyzFi1jrdoNO1bR7oTWf3JOOOklOQ_pp-ZMH53ogz470Ucn-uSkzr07n1hHj_bf1F8JFfh4ArA--ugw6WzcUYl1CU3RNrr_nPgDL4ejrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400489790</pqid></control><display><type>article</type><title>Influence of contaminant exposure on the development of aerobic ETBE biodegradation potential in microbial communities from a gasoline-impacted aquifer</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Nicholls, H.C.G. ; Mallinson, H.E.H. ; Rolfe, S.A. ; Hjort, M. ; Spence, M.J. ; Thornton, S.F.</creator><creatorcontrib>Nicholls, H.C.G. ; Mallinson, H.E.H. ; Rolfe, S.A. ; Hjort, M. ; Spence, M.J. ; Thornton, S.F.</creatorcontrib><description>[Display omitted] •Aerobic biodegradation of ETBE at environmentally significant rates in groundwater.•Increased prominence of ethB gene-containing organisms following exposure to ETBE.•Preferential biodegradation of ETBE before MTBE in mixtures. Aerobic biodegradation of ethyl tert butyl ether (ETBE) in a gasoline-impacted aquifer was investigated in laboratory microcosms containing groundwater and aquifer material from ETBE-impacted and non-impacted locations amended with either ETBE, or ETBE plus methyl tert butyl ether (MTBE). As sole substrate, ETBE was biodegraded (maximum rate of 0.54 day−1) without a lag in ETBE-impacted microcosms but with a lag of up to 66 days in non-impacted microcosms (maximum rate of 0.38 day−1). As co-substrate, ETBE was biodegraded preferentially (maximum rate of 0.25 and 0.99 day−1 in non-impacted and impacted microcosms, respectively) before MTBE (maximum rate of 0.24 and 0.36 day−1 in non-impacted and impacted microcosms, respectively). Further addition of ETBE and MTBE reduced lags and increased biodegradation rates. ethB gene copy numbers increased significantly (&gt;100 fold) after exposure to ETBE, while overall cell numbers remained constant, suggesting that ethB-containing microorganisms come to dominate the microbial communities. Deep sequencing of 16S rRNA genes identified members of the Comamonadaceae family that increased in relative abundance upon exposure to ETBE. This study demonstrates the potential for ETBE biodegradation within the unsaturated and saturated zone, and that ETBE biodegrading capability is rapidly developed and maintained within the aquifer microbial community over extended timescales.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2020.122022</identifier><identifier>PMID: 31962211</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Aerobiosis ; Aquifer ; aquifers ; biodegradation ; Biodegradation, Environmental ; Bioremediation ; Comamonadaceae ; ethB ; Ethyl Ethers - metabolism ; Gasoline ; Gasoline ether oxygenates (GEO) ; gene dosage ; genes ; groundwater ; Groundwater - microbiology ; high-throughput nucleotide sequencing ; Methyl Ethers - metabolism ; microbial communities ; Microbiota - genetics ; microorganisms ; Natural attenuation ; ribosomal RNA ; RNA, Ribosomal, 16S ; Water Pollutants, Chemical - metabolism</subject><ispartof>Journal of hazardous materials, 2020-04, Vol.388, p.122022, Article 122022</ispartof><rights>2020 The Authors</rights><rights>Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-cc6bc6a684d17ebc45188ad5f8a7e5526b18aca1a700b3aa32f0ee678502d38d3</citedby><cites>FETCH-LOGICAL-c445t-cc6bc6a684d17ebc45188ad5f8a7e5526b18aca1a700b3aa32f0ee678502d38d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S030438942030008X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31962211$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nicholls, H.C.G.</creatorcontrib><creatorcontrib>Mallinson, H.E.H.</creatorcontrib><creatorcontrib>Rolfe, S.A.</creatorcontrib><creatorcontrib>Hjort, M.</creatorcontrib><creatorcontrib>Spence, M.J.</creatorcontrib><creatorcontrib>Thornton, S.F.</creatorcontrib><title>Influence of contaminant exposure on the development of aerobic ETBE biodegradation potential in microbial communities from a gasoline-impacted aquifer</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>[Display omitted] •Aerobic biodegradation of ETBE at environmentally significant rates in groundwater.•Increased prominence of ethB gene-containing organisms following exposure to ETBE.•Preferential biodegradation of ETBE before MTBE in mixtures. Aerobic biodegradation of ethyl tert butyl ether (ETBE) in a gasoline-impacted aquifer was investigated in laboratory microcosms containing groundwater and aquifer material from ETBE-impacted and non-impacted locations amended with either ETBE, or ETBE plus methyl tert butyl ether (MTBE). As sole substrate, ETBE was biodegraded (maximum rate of 0.54 day−1) without a lag in ETBE-impacted microcosms but with a lag of up to 66 days in non-impacted microcosms (maximum rate of 0.38 day−1). As co-substrate, ETBE was biodegraded preferentially (maximum rate of 0.25 and 0.99 day−1 in non-impacted and impacted microcosms, respectively) before MTBE (maximum rate of 0.24 and 0.36 day−1 in non-impacted and impacted microcosms, respectively). Further addition of ETBE and MTBE reduced lags and increased biodegradation rates. ethB gene copy numbers increased significantly (&gt;100 fold) after exposure to ETBE, while overall cell numbers remained constant, suggesting that ethB-containing microorganisms come to dominate the microbial communities. Deep sequencing of 16S rRNA genes identified members of the Comamonadaceae family that increased in relative abundance upon exposure to ETBE. This study demonstrates the potential for ETBE biodegradation within the unsaturated and saturated zone, and that ETBE biodegrading capability is rapidly developed and maintained within the aquifer microbial community over extended timescales.</description><subject>Aerobiosis</subject><subject>Aquifer</subject><subject>aquifers</subject><subject>biodegradation</subject><subject>Biodegradation, Environmental</subject><subject>Bioremediation</subject><subject>Comamonadaceae</subject><subject>ethB</subject><subject>Ethyl Ethers - metabolism</subject><subject>Gasoline</subject><subject>Gasoline ether oxygenates (GEO)</subject><subject>gene dosage</subject><subject>genes</subject><subject>groundwater</subject><subject>Groundwater - microbiology</subject><subject>high-throughput nucleotide sequencing</subject><subject>Methyl Ethers - metabolism</subject><subject>microbial communities</subject><subject>Microbiota - genetics</subject><subject>microorganisms</subject><subject>Natural attenuation</subject><subject>ribosomal RNA</subject><subject>RNA, Ribosomal, 16S</subject><subject>Water Pollutants, Chemical - metabolism</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1uFDEMgCMEokvhEUA5cpklP_OTPSGoFqhUiUs5R57E02Y1SaZJpiq8CK9LVrtw5WTZ_mzL-gh5y9mWM95_OGwP9_DLQ9kKJmpN1CCekQ1Xg2yklP1zsmGStY1Uu_aCvMr5wBjjQ9e-JBeS73ohON-Q39dhmlcMBmmcqImhgHcBQqH4tMS8ploPtNwjtfiIc1w81l5FAVMcnaH72897Orpo8S6BheIqvsRSKQczdYF6Z45kTUz0fg2uOMx0StFToHeQ4-wCNs4vYApaCg-rmzC9Ji8mmDO-OcdL8uPL_vbqW3Pz_ev11aebxrRtVxpj-tH00KvW8gFH03ZcKbDdpGDArhP9yBUY4DAwNkoAKSaG2A-qY8JKZeUleX_au6T4sGIu2rtscJ4hYFyzFi1jrdoNO1bR7oTWf3JOOOklOQ_pp-ZMH53ogz470Ucn-uSkzr07n1hHj_bf1F8JFfh4ArA--ugw6WzcUYl1CU3RNrr_nPgDL4ejrQ</recordid><startdate>20200415</startdate><enddate>20200415</enddate><creator>Nicholls, H.C.G.</creator><creator>Mallinson, H.E.H.</creator><creator>Rolfe, S.A.</creator><creator>Hjort, M.</creator><creator>Spence, M.J.</creator><creator>Thornton, S.F.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20200415</creationdate><title>Influence of contaminant exposure on the development of aerobic ETBE biodegradation potential in microbial communities from a gasoline-impacted aquifer</title><author>Nicholls, H.C.G. ; Mallinson, H.E.H. ; Rolfe, S.A. ; Hjort, M. ; Spence, M.J. ; Thornton, S.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-cc6bc6a684d17ebc45188ad5f8a7e5526b18aca1a700b3aa32f0ee678502d38d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerobiosis</topic><topic>Aquifer</topic><topic>aquifers</topic><topic>biodegradation</topic><topic>Biodegradation, Environmental</topic><topic>Bioremediation</topic><topic>Comamonadaceae</topic><topic>ethB</topic><topic>Ethyl Ethers - metabolism</topic><topic>Gasoline</topic><topic>Gasoline ether oxygenates (GEO)</topic><topic>gene dosage</topic><topic>genes</topic><topic>groundwater</topic><topic>Groundwater - microbiology</topic><topic>high-throughput nucleotide sequencing</topic><topic>Methyl Ethers - metabolism</topic><topic>microbial communities</topic><topic>Microbiota - genetics</topic><topic>microorganisms</topic><topic>Natural attenuation</topic><topic>ribosomal RNA</topic><topic>RNA, Ribosomal, 16S</topic><topic>Water Pollutants, Chemical - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nicholls, H.C.G.</creatorcontrib><creatorcontrib>Mallinson, H.E.H.</creatorcontrib><creatorcontrib>Rolfe, S.A.</creatorcontrib><creatorcontrib>Hjort, M.</creatorcontrib><creatorcontrib>Spence, M.J.</creatorcontrib><creatorcontrib>Thornton, S.F.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nicholls, H.C.G.</au><au>Mallinson, H.E.H.</au><au>Rolfe, S.A.</au><au>Hjort, M.</au><au>Spence, M.J.</au><au>Thornton, S.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of contaminant exposure on the development of aerobic ETBE biodegradation potential in microbial communities from a gasoline-impacted aquifer</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2020-04-15</date><risdate>2020</risdate><volume>388</volume><spage>122022</spage><pages>122022-</pages><artnum>122022</artnum><issn>0304-3894</issn><eissn>1873-3336</eissn><abstract>[Display omitted] •Aerobic biodegradation of ETBE at environmentally significant rates in groundwater.•Increased prominence of ethB gene-containing organisms following exposure to ETBE.•Preferential biodegradation of ETBE before MTBE in mixtures. Aerobic biodegradation of ethyl tert butyl ether (ETBE) in a gasoline-impacted aquifer was investigated in laboratory microcosms containing groundwater and aquifer material from ETBE-impacted and non-impacted locations amended with either ETBE, or ETBE plus methyl tert butyl ether (MTBE). As sole substrate, ETBE was biodegraded (maximum rate of 0.54 day−1) without a lag in ETBE-impacted microcosms but with a lag of up to 66 days in non-impacted microcosms (maximum rate of 0.38 day−1). As co-substrate, ETBE was biodegraded preferentially (maximum rate of 0.25 and 0.99 day−1 in non-impacted and impacted microcosms, respectively) before MTBE (maximum rate of 0.24 and 0.36 day−1 in non-impacted and impacted microcosms, respectively). Further addition of ETBE and MTBE reduced lags and increased biodegradation rates. ethB gene copy numbers increased significantly (&gt;100 fold) after exposure to ETBE, while overall cell numbers remained constant, suggesting that ethB-containing microorganisms come to dominate the microbial communities. Deep sequencing of 16S rRNA genes identified members of the Comamonadaceae family that increased in relative abundance upon exposure to ETBE. This study demonstrates the potential for ETBE biodegradation within the unsaturated and saturated zone, and that ETBE biodegrading capability is rapidly developed and maintained within the aquifer microbial community over extended timescales.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>31962211</pmid><doi>10.1016/j.jhazmat.2020.122022</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3894
ispartof Journal of hazardous materials, 2020-04, Vol.388, p.122022, Article 122022
issn 0304-3894
1873-3336
language eng
recordid cdi_proquest_miscellaneous_2400489790
source MEDLINE; Elsevier ScienceDirect Journals
subjects Aerobiosis
Aquifer
aquifers
biodegradation
Biodegradation, Environmental
Bioremediation
Comamonadaceae
ethB
Ethyl Ethers - metabolism
Gasoline
Gasoline ether oxygenates (GEO)
gene dosage
genes
groundwater
Groundwater - microbiology
high-throughput nucleotide sequencing
Methyl Ethers - metabolism
microbial communities
Microbiota - genetics
microorganisms
Natural attenuation
ribosomal RNA
RNA, Ribosomal, 16S
Water Pollutants, Chemical - metabolism
title Influence of contaminant exposure on the development of aerobic ETBE biodegradation potential in microbial communities from a gasoline-impacted aquifer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A54%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20contaminant%20exposure%20on%20the%20development%20of%20aerobic%20ETBE%20biodegradation%20potential%20in%20microbial%20communities%20from%20a%20gasoline-impacted%20aquifer&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Nicholls,%20H.C.G.&rft.date=2020-04-15&rft.volume=388&rft.spage=122022&rft.pages=122022-&rft.artnum=122022&rft.issn=0304-3894&rft.eissn=1873-3336&rft_id=info:doi/10.1016/j.jhazmat.2020.122022&rft_dat=%3Cproquest_cross%3E2400489790%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400489790&rft_id=info:pmid/31962211&rft_els_id=S030438942030008X&rfr_iscdi=true