l‑Arginine Ameliorates Lipopolysaccharide-Induced Intestinal Inflammation through Inhibiting the TLR4/NF-κB and MAPK Pathways and Stimulating β‑Defensin Expression in Vivo and in Vitro
Nutritional regulation of endogenous antimicrobial peptide (AMP) expression is considered a promising nonantibiotic approach to suppressing intestinal infection of pathogen. The current study investigated the effects of l-arginine on LPS-induced intestinal inflammation and barrier dysfunction in viv...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural and food chemistry 2020-03, Vol.68 (9), p.2648-2663 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nutritional regulation of endogenous antimicrobial peptide (AMP) expression is considered a promising nonantibiotic approach to suppressing intestinal infection of pathogen. The current study investigated the effects of l-arginine on LPS-induced intestinal inflammation and barrier dysfunction in vivo and in vitro. The results revealed that l-arginine attenuated LPS-induced inflammatory response, inhibited the downregulation of tight junction proteins (TJP) (p < 0.05) by LPS, and maintained intestinal integrity. In porcine intestinal epithelial cells (IPEC-J2), l-arginine obviously suppressed (p < 0.05) the levels of IL-6 (220.63 ± 2.82), IL-8 (333.95 ± 3.75), IL-1β (693.08 ± 2.38), and TNF-α (258.04 ± 4.14) induced by LPS. Furthermore, l-arginine diminished the LPS-induced expression of Toll-like receptor 4 (TLR4) and inhibited activation of TLR4-mediated nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Importantly, we proposed a new mechanism that l-arginine had the ability to stimulate the expression of porcine epithelial β-defensins through activating the mammalian target of the rapamycin (mTOR) pathway, which exerts anti-inflammatory influence. Moreover, pBD-1 gene overexpression decreased (p < 0.05) the TNF-α level stimulated by LPS in IPEC-J2 cells (4.22 ± 1.64). The present study indicated that l-arginine enhanced disease resistance through inhibiting the TLR4/NF-κB and MAPK pathways and partially, possibly through increasing the intestinal β-defensin expression. |
---|---|
ISSN: | 0021-8561 1520-5118 1520-5118 |
DOI: | 10.1021/acs.jafc.9b07611 |