Background-free upconversion-encoded microspheres for mycotoxin detection based on a rapid visualization method

Methods for detecting mycotoxins are very important because of the great health hazards of mycotoxins. However, there is a high background and low signal-to-noise ratio in real-time sensing, and therefore it is difficult to meet the fast, accurate, and convenient requirements for control of food qua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical and bioanalytical chemistry 2020, Vol.412 (1), p.81-91
Hauptverfasser: Yang, Minye, Cui, Meihui, Wang, Weixun, Yang, Yaodong, Chang, Jin, Hao, Jianye, Wang, Hanjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 91
container_issue 1
container_start_page 81
container_title Analytical and bioanalytical chemistry
container_volume 412
creator Yang, Minye
Cui, Meihui
Wang, Weixun
Yang, Yaodong
Chang, Jin
Hao, Jianye
Wang, Hanjie
description Methods for detecting mycotoxins are very important because of the great health hazards of mycotoxins. However, there is a high background and low signal-to-noise ratio in real-time sensing, and therefore it is difficult to meet the fast, accurate, and convenient requirements for control of food quality. Here we constructed a quantitative fluorescence image analysis based on multicolor upconversion nanocrystal (UCN)-encoded microspheres for detection of ochratoxin A and zearalenone. The background-free encoding image signal of UCN-doped microspheres was captured by fluorescence microscopy under near-infrared excitation, whereas the detection image signal of phycoerythrin-labeled secondary antibodies conjugated to the microspheres was captured under blue light excitation. We custom-wrote an algorithm to analyze the two images for the same sample in 10 s, and only the gray value in the red channel of the secondary probe confirmed the quantity. The results showed that this novel detection platform performed feasible and reliable fluorescence image measurements by this method. Additionally, the limit of detection of was 0.34721 ng/mL for ochratoxin A and 0.41162 ng/mL for zearalenone. We envision that this UCN encoding strategy will be usefully applied for fast, accurate, and convenient testing of multiple food contaminants to ensure the safety of the food.
doi_str_mv 10.1007/s00216-019-02206-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2400452428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A612850553</galeid><sourcerecordid>A612850553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-7c0c681ede4c03d9408fec86a9f07f16ad5baa35bc284e2bfeb1f5aa133d79533</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEoqXwBzigSFy4pMzYsZM9loovqRIXOFuOPd66JHawk4ry6_HullYgBPLBI88zr2bGb1U9RzhFgO51BmAoG8BNA4yBbPBBdYwS-4ZJAQ_v4pYdVU9yvgJA0aN8XB1x3AjeIT-u4httvm5TXINtXCKq19nEcE0p-xgaCiZasvXkTYp5vqREuXYx1dONiUv87kNtaSGzFLgedC5oCXSd9Oxtfe3zqkf_Q-_TEy2X0T6tHjk9Znp2e59UX969_Xz-obn49P7j-dlFYwSypekMGNkjWWoNcLtpoXdkeqk3DjqHUlsxaM3FYFjfEhscDeiE1si57cps_KR6ddCdU_y2Ul7U5LOhcdSB4poVawFawVrW_x_lLcrCIxT05R_oVVxTKIPsqB67sli8p7Z6JOWDi0vSZieqziSyXoDYd3j6F6ocS2XdMZDz5f23AnYo2P1FTuTUnPyk041CUDtDqIMhVDGE2htC7Xp5cdvxOkxk70p-OaAA_ADkkgpbSvcj_UP2J3wXwIk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348173191</pqid></control><display><type>article</type><title>Background-free upconversion-encoded microspheres for mycotoxin detection based on a rapid visualization method</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Yang, Minye ; Cui, Meihui ; Wang, Weixun ; Yang, Yaodong ; Chang, Jin ; Hao, Jianye ; Wang, Hanjie</creator><creatorcontrib>Yang, Minye ; Cui, Meihui ; Wang, Weixun ; Yang, Yaodong ; Chang, Jin ; Hao, Jianye ; Wang, Hanjie</creatorcontrib><description>Methods for detecting mycotoxins are very important because of the great health hazards of mycotoxins. However, there is a high background and low signal-to-noise ratio in real-time sensing, and therefore it is difficult to meet the fast, accurate, and convenient requirements for control of food quality. Here we constructed a quantitative fluorescence image analysis based on multicolor upconversion nanocrystal (UCN)-encoded microspheres for detection of ochratoxin A and zearalenone. The background-free encoding image signal of UCN-doped microspheres was captured by fluorescence microscopy under near-infrared excitation, whereas the detection image signal of phycoerythrin-labeled secondary antibodies conjugated to the microspheres was captured under blue light excitation. We custom-wrote an algorithm to analyze the two images for the same sample in 10 s, and only the gray value in the red channel of the secondary probe confirmed the quantity. The results showed that this novel detection platform performed feasible and reliable fluorescence image measurements by this method. Additionally, the limit of detection of was 0.34721 ng/mL for ochratoxin A and 0.41162 ng/mL for zearalenone. We envision that this UCN encoding strategy will be usefully applied for fast, accurate, and convenient testing of multiple food contaminants to ensure the safety of the food.</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-019-02206-1</identifier><identifier>PMID: 31953713</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Analytical Chemistry ; Antibodies ; Background noise ; Biochemistry ; blue light ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Coding ; Contaminants ; detection limit ; Excitation ; Fluorescence ; Fluorescence microscopy ; Food ; Food contamination ; Food Contamination - analysis ; Food quality ; Food safety ; Food Science ; Health aspects ; Health hazards ; Image analysis ; Image detection ; Image processing ; Immunoassay - methods ; Laboratory Medicine ; Limit of Detection ; Methods ; microparticles ; Microspheres ; Monitoring/Environmental Analysis ; Mycotoxins ; Nanocrystals ; Nanoparticles - chemistry ; Ochratoxin A ; Ochratoxins - analysis ; Paper in Forefront ; Safety and security measures ; Signal to noise ratio ; Upconversion ; Zearalenone ; Zearalenone - analysis</subject><ispartof>Analytical and bioanalytical chemistry, 2020, Vol.412 (1), p.81-91</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Analytical and Bioanalytical Chemistry is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-7c0c681ede4c03d9408fec86a9f07f16ad5baa35bc284e2bfeb1f5aa133d79533</citedby><cites>FETCH-LOGICAL-c512t-7c0c681ede4c03d9408fec86a9f07f16ad5baa35bc284e2bfeb1f5aa133d79533</cites><orcidid>0000-0001-9400-814X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00216-019-02206-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00216-019-02206-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31953713$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Minye</creatorcontrib><creatorcontrib>Cui, Meihui</creatorcontrib><creatorcontrib>Wang, Weixun</creatorcontrib><creatorcontrib>Yang, Yaodong</creatorcontrib><creatorcontrib>Chang, Jin</creatorcontrib><creatorcontrib>Hao, Jianye</creatorcontrib><creatorcontrib>Wang, Hanjie</creatorcontrib><title>Background-free upconversion-encoded microspheres for mycotoxin detection based on a rapid visualization method</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>Methods for detecting mycotoxins are very important because of the great health hazards of mycotoxins. However, there is a high background and low signal-to-noise ratio in real-time sensing, and therefore it is difficult to meet the fast, accurate, and convenient requirements for control of food quality. Here we constructed a quantitative fluorescence image analysis based on multicolor upconversion nanocrystal (UCN)-encoded microspheres for detection of ochratoxin A and zearalenone. The background-free encoding image signal of UCN-doped microspheres was captured by fluorescence microscopy under near-infrared excitation, whereas the detection image signal of phycoerythrin-labeled secondary antibodies conjugated to the microspheres was captured under blue light excitation. We custom-wrote an algorithm to analyze the two images for the same sample in 10 s, and only the gray value in the red channel of the secondary probe confirmed the quantity. The results showed that this novel detection platform performed feasible and reliable fluorescence image measurements by this method. Additionally, the limit of detection of was 0.34721 ng/mL for ochratoxin A and 0.41162 ng/mL for zearalenone. We envision that this UCN encoding strategy will be usefully applied for fast, accurate, and convenient testing of multiple food contaminants to ensure the safety of the food.</description><subject>Algorithms</subject><subject>Analytical Chemistry</subject><subject>Antibodies</subject><subject>Background noise</subject><subject>Biochemistry</subject><subject>blue light</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Coding</subject><subject>Contaminants</subject><subject>detection limit</subject><subject>Excitation</subject><subject>Fluorescence</subject><subject>Fluorescence microscopy</subject><subject>Food</subject><subject>Food contamination</subject><subject>Food Contamination - analysis</subject><subject>Food quality</subject><subject>Food safety</subject><subject>Food Science</subject><subject>Health aspects</subject><subject>Health hazards</subject><subject>Image analysis</subject><subject>Image detection</subject><subject>Image processing</subject><subject>Immunoassay - methods</subject><subject>Laboratory Medicine</subject><subject>Limit of Detection</subject><subject>Methods</subject><subject>microparticles</subject><subject>Microspheres</subject><subject>Monitoring/Environmental Analysis</subject><subject>Mycotoxins</subject><subject>Nanocrystals</subject><subject>Nanoparticles - chemistry</subject><subject>Ochratoxin A</subject><subject>Ochratoxins - analysis</subject><subject>Paper in Forefront</subject><subject>Safety and security measures</subject><subject>Signal to noise ratio</subject><subject>Upconversion</subject><subject>Zearalenone</subject><subject>Zearalenone - analysis</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkk1v1DAQhiMEoqXwBzigSFy4pMzYsZM9loovqRIXOFuOPd66JHawk4ry6_HullYgBPLBI88zr2bGb1U9RzhFgO51BmAoG8BNA4yBbPBBdYwS-4ZJAQ_v4pYdVU9yvgJA0aN8XB1x3AjeIT-u4httvm5TXINtXCKq19nEcE0p-xgaCiZasvXkTYp5vqREuXYx1dONiUv87kNtaSGzFLgedC5oCXSd9Oxtfe3zqkf_Q-_TEy2X0T6tHjk9Znp2e59UX969_Xz-obn49P7j-dlFYwSypekMGNkjWWoNcLtpoXdkeqk3DjqHUlsxaM3FYFjfEhscDeiE1si57cps_KR6ddCdU_y2Ul7U5LOhcdSB4poVawFawVrW_x_lLcrCIxT05R_oVVxTKIPsqB67sli8p7Z6JOWDi0vSZieqziSyXoDYd3j6F6ocS2XdMZDz5f23AnYo2P1FTuTUnPyk041CUDtDqIMhVDGE2htC7Xp5cdvxOkxk70p-OaAA_ADkkgpbSvcj_UP2J3wXwIk</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Yang, Minye</creator><creator>Cui, Meihui</creator><creator>Wang, Weixun</creator><creator>Yang, Yaodong</creator><creator>Chang, Jin</creator><creator>Hao, Jianye</creator><creator>Wang, Hanjie</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-9400-814X</orcidid></search><sort><creationdate>2020</creationdate><title>Background-free upconversion-encoded microspheres for mycotoxin detection based on a rapid visualization method</title><author>Yang, Minye ; Cui, Meihui ; Wang, Weixun ; Yang, Yaodong ; Chang, Jin ; Hao, Jianye ; Wang, Hanjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-7c0c681ede4c03d9408fec86a9f07f16ad5baa35bc284e2bfeb1f5aa133d79533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Analytical Chemistry</topic><topic>Antibodies</topic><topic>Background noise</topic><topic>Biochemistry</topic><topic>blue light</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Coding</topic><topic>Contaminants</topic><topic>detection limit</topic><topic>Excitation</topic><topic>Fluorescence</topic><topic>Fluorescence microscopy</topic><topic>Food</topic><topic>Food contamination</topic><topic>Food Contamination - analysis</topic><topic>Food quality</topic><topic>Food safety</topic><topic>Food Science</topic><topic>Health aspects</topic><topic>Health hazards</topic><topic>Image analysis</topic><topic>Image detection</topic><topic>Image processing</topic><topic>Immunoassay - methods</topic><topic>Laboratory Medicine</topic><topic>Limit of Detection</topic><topic>Methods</topic><topic>microparticles</topic><topic>Microspheres</topic><topic>Monitoring/Environmental Analysis</topic><topic>Mycotoxins</topic><topic>Nanocrystals</topic><topic>Nanoparticles - chemistry</topic><topic>Ochratoxin A</topic><topic>Ochratoxins - analysis</topic><topic>Paper in Forefront</topic><topic>Safety and security measures</topic><topic>Signal to noise ratio</topic><topic>Upconversion</topic><topic>Zearalenone</topic><topic>Zearalenone - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Minye</creatorcontrib><creatorcontrib>Cui, Meihui</creatorcontrib><creatorcontrib>Wang, Weixun</creatorcontrib><creatorcontrib>Yang, Yaodong</creatorcontrib><creatorcontrib>Chang, Jin</creatorcontrib><creatorcontrib>Hao, Jianye</creatorcontrib><creatorcontrib>Wang, Hanjie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Minye</au><au>Cui, Meihui</au><au>Wang, Weixun</au><au>Yang, Yaodong</au><au>Chang, Jin</au><au>Hao, Jianye</au><au>Wang, Hanjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Background-free upconversion-encoded microspheres for mycotoxin detection based on a rapid visualization method</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2020</date><risdate>2020</risdate><volume>412</volume><issue>1</issue><spage>81</spage><epage>91</epage><pages>81-91</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>Methods for detecting mycotoxins are very important because of the great health hazards of mycotoxins. However, there is a high background and low signal-to-noise ratio in real-time sensing, and therefore it is difficult to meet the fast, accurate, and convenient requirements for control of food quality. Here we constructed a quantitative fluorescence image analysis based on multicolor upconversion nanocrystal (UCN)-encoded microspheres for detection of ochratoxin A and zearalenone. The background-free encoding image signal of UCN-doped microspheres was captured by fluorescence microscopy under near-infrared excitation, whereas the detection image signal of phycoerythrin-labeled secondary antibodies conjugated to the microspheres was captured under blue light excitation. We custom-wrote an algorithm to analyze the two images for the same sample in 10 s, and only the gray value in the red channel of the secondary probe confirmed the quantity. The results showed that this novel detection platform performed feasible and reliable fluorescence image measurements by this method. Additionally, the limit of detection of was 0.34721 ng/mL for ochratoxin A and 0.41162 ng/mL for zearalenone. We envision that this UCN encoding strategy will be usefully applied for fast, accurate, and convenient testing of multiple food contaminants to ensure the safety of the food.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31953713</pmid><doi>10.1007/s00216-019-02206-1</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9400-814X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1618-2642
ispartof Analytical and bioanalytical chemistry, 2020, Vol.412 (1), p.81-91
issn 1618-2642
1618-2650
language eng
recordid cdi_proquest_miscellaneous_2400452428
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Algorithms
Analytical Chemistry
Antibodies
Background noise
Biochemistry
blue light
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Coding
Contaminants
detection limit
Excitation
Fluorescence
Fluorescence microscopy
Food
Food contamination
Food Contamination - analysis
Food quality
Food safety
Food Science
Health aspects
Health hazards
Image analysis
Image detection
Image processing
Immunoassay - methods
Laboratory Medicine
Limit of Detection
Methods
microparticles
Microspheres
Monitoring/Environmental Analysis
Mycotoxins
Nanocrystals
Nanoparticles - chemistry
Ochratoxin A
Ochratoxins - analysis
Paper in Forefront
Safety and security measures
Signal to noise ratio
Upconversion
Zearalenone
Zearalenone - analysis
title Background-free upconversion-encoded microspheres for mycotoxin detection based on a rapid visualization method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A19%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Background-free%20upconversion-encoded%20microspheres%20for%20mycotoxin%20detection%20based%20on%20a%20rapid%20visualization%20method&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Yang,%20Minye&rft.date=2020&rft.volume=412&rft.issue=1&rft.spage=81&rft.epage=91&rft.pages=81-91&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-019-02206-1&rft_dat=%3Cgale_proqu%3EA612850553%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348173191&rft_id=info:pmid/31953713&rft_galeid=A612850553&rfr_iscdi=true