Background-free upconversion-encoded microspheres for mycotoxin detection based on a rapid visualization method
Methods for detecting mycotoxins are very important because of the great health hazards of mycotoxins. However, there is a high background and low signal-to-noise ratio in real-time sensing, and therefore it is difficult to meet the fast, accurate, and convenient requirements for control of food qua...
Gespeichert in:
Veröffentlicht in: | Analytical and bioanalytical chemistry 2020, Vol.412 (1), p.81-91 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 91 |
---|---|
container_issue | 1 |
container_start_page | 81 |
container_title | Analytical and bioanalytical chemistry |
container_volume | 412 |
creator | Yang, Minye Cui, Meihui Wang, Weixun Yang, Yaodong Chang, Jin Hao, Jianye Wang, Hanjie |
description | Methods for detecting mycotoxins are very important because of the great health hazards of mycotoxins. However, there is a high background and low signal-to-noise ratio in real-time sensing, and therefore it is difficult to meet the fast, accurate, and convenient requirements for control of food quality. Here we constructed a quantitative fluorescence image analysis based on multicolor upconversion nanocrystal (UCN)-encoded microspheres for detection of ochratoxin A and zearalenone. The background-free encoding image signal of UCN-doped microspheres was captured by fluorescence microscopy under near-infrared excitation, whereas the detection image signal of phycoerythrin-labeled secondary antibodies conjugated to the microspheres was captured under blue light excitation. We custom-wrote an algorithm to analyze the two images for the same sample in 10 s, and only the gray value in the red channel of the secondary probe confirmed the quantity. The results showed that this novel detection platform performed feasible and reliable fluorescence image measurements by this method. Additionally, the limit of detection of was 0.34721 ng/mL for ochratoxin A and 0.41162 ng/mL for zearalenone. We envision that this UCN encoding strategy will be usefully applied for fast, accurate, and convenient testing of multiple food contaminants to ensure the safety of the food. |
doi_str_mv | 10.1007/s00216-019-02206-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2400452428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A612850553</galeid><sourcerecordid>A612850553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-7c0c681ede4c03d9408fec86a9f07f16ad5baa35bc284e2bfeb1f5aa133d79533</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEoqXwBzigSFy4pMzYsZM9loovqRIXOFuOPd66JHawk4ry6_HullYgBPLBI88zr2bGb1U9RzhFgO51BmAoG8BNA4yBbPBBdYwS-4ZJAQ_v4pYdVU9yvgJA0aN8XB1x3AjeIT-u4httvm5TXINtXCKq19nEcE0p-xgaCiZasvXkTYp5vqREuXYx1dONiUv87kNtaSGzFLgedC5oCXSd9Oxtfe3zqkf_Q-_TEy2X0T6tHjk9Znp2e59UX969_Xz-obn49P7j-dlFYwSypekMGNkjWWoNcLtpoXdkeqk3DjqHUlsxaM3FYFjfEhscDeiE1si57cps_KR6ddCdU_y2Ul7U5LOhcdSB4poVawFawVrW_x_lLcrCIxT05R_oVVxTKIPsqB67sli8p7Z6JOWDi0vSZieqziSyXoDYd3j6F6ocS2XdMZDz5f23AnYo2P1FTuTUnPyk041CUDtDqIMhVDGE2htC7Xp5cdvxOkxk70p-OaAA_ADkkgpbSvcj_UP2J3wXwIk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348173191</pqid></control><display><type>article</type><title>Background-free upconversion-encoded microspheres for mycotoxin detection based on a rapid visualization method</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Yang, Minye ; Cui, Meihui ; Wang, Weixun ; Yang, Yaodong ; Chang, Jin ; Hao, Jianye ; Wang, Hanjie</creator><creatorcontrib>Yang, Minye ; Cui, Meihui ; Wang, Weixun ; Yang, Yaodong ; Chang, Jin ; Hao, Jianye ; Wang, Hanjie</creatorcontrib><description>Methods for detecting mycotoxins are very important because of the great health hazards of mycotoxins. However, there is a high background and low signal-to-noise ratio in real-time sensing, and therefore it is difficult to meet the fast, accurate, and convenient requirements for control of food quality. Here we constructed a quantitative fluorescence image analysis based on multicolor upconversion nanocrystal (UCN)-encoded microspheres for detection of ochratoxin A and zearalenone. The background-free encoding image signal of UCN-doped microspheres was captured by fluorescence microscopy under near-infrared excitation, whereas the detection image signal of phycoerythrin-labeled secondary antibodies conjugated to the microspheres was captured under blue light excitation. We custom-wrote an algorithm to analyze the two images for the same sample in 10 s, and only the gray value in the red channel of the secondary probe confirmed the quantity. The results showed that this novel detection platform performed feasible and reliable fluorescence image measurements by this method. Additionally, the limit of detection of was 0.34721 ng/mL for ochratoxin A and 0.41162 ng/mL for zearalenone. We envision that this UCN encoding strategy will be usefully applied for fast, accurate, and convenient testing of multiple food contaminants to ensure the safety of the food.</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-019-02206-1</identifier><identifier>PMID: 31953713</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Analytical Chemistry ; Antibodies ; Background noise ; Biochemistry ; blue light ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Coding ; Contaminants ; detection limit ; Excitation ; Fluorescence ; Fluorescence microscopy ; Food ; Food contamination ; Food Contamination - analysis ; Food quality ; Food safety ; Food Science ; Health aspects ; Health hazards ; Image analysis ; Image detection ; Image processing ; Immunoassay - methods ; Laboratory Medicine ; Limit of Detection ; Methods ; microparticles ; Microspheres ; Monitoring/Environmental Analysis ; Mycotoxins ; Nanocrystals ; Nanoparticles - chemistry ; Ochratoxin A ; Ochratoxins - analysis ; Paper in Forefront ; Safety and security measures ; Signal to noise ratio ; Upconversion ; Zearalenone ; Zearalenone - analysis</subject><ispartof>Analytical and bioanalytical chemistry, 2020, Vol.412 (1), p.81-91</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Analytical and Bioanalytical Chemistry is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-7c0c681ede4c03d9408fec86a9f07f16ad5baa35bc284e2bfeb1f5aa133d79533</citedby><cites>FETCH-LOGICAL-c512t-7c0c681ede4c03d9408fec86a9f07f16ad5baa35bc284e2bfeb1f5aa133d79533</cites><orcidid>0000-0001-9400-814X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00216-019-02206-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00216-019-02206-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31953713$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Minye</creatorcontrib><creatorcontrib>Cui, Meihui</creatorcontrib><creatorcontrib>Wang, Weixun</creatorcontrib><creatorcontrib>Yang, Yaodong</creatorcontrib><creatorcontrib>Chang, Jin</creatorcontrib><creatorcontrib>Hao, Jianye</creatorcontrib><creatorcontrib>Wang, Hanjie</creatorcontrib><title>Background-free upconversion-encoded microspheres for mycotoxin detection based on a rapid visualization method</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>Methods for detecting mycotoxins are very important because of the great health hazards of mycotoxins. However, there is a high background and low signal-to-noise ratio in real-time sensing, and therefore it is difficult to meet the fast, accurate, and convenient requirements for control of food quality. Here we constructed a quantitative fluorescence image analysis based on multicolor upconversion nanocrystal (UCN)-encoded microspheres for detection of ochratoxin A and zearalenone. The background-free encoding image signal of UCN-doped microspheres was captured by fluorescence microscopy under near-infrared excitation, whereas the detection image signal of phycoerythrin-labeled secondary antibodies conjugated to the microspheres was captured under blue light excitation. We custom-wrote an algorithm to analyze the two images for the same sample in 10 s, and only the gray value in the red channel of the secondary probe confirmed the quantity. The results showed that this novel detection platform performed feasible and reliable fluorescence image measurements by this method. Additionally, the limit of detection of was 0.34721 ng/mL for ochratoxin A and 0.41162 ng/mL for zearalenone. We envision that this UCN encoding strategy will be usefully applied for fast, accurate, and convenient testing of multiple food contaminants to ensure the safety of the food.</description><subject>Algorithms</subject><subject>Analytical Chemistry</subject><subject>Antibodies</subject><subject>Background noise</subject><subject>Biochemistry</subject><subject>blue light</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Coding</subject><subject>Contaminants</subject><subject>detection limit</subject><subject>Excitation</subject><subject>Fluorescence</subject><subject>Fluorescence microscopy</subject><subject>Food</subject><subject>Food contamination</subject><subject>Food Contamination - analysis</subject><subject>Food quality</subject><subject>Food safety</subject><subject>Food Science</subject><subject>Health aspects</subject><subject>Health hazards</subject><subject>Image analysis</subject><subject>Image detection</subject><subject>Image processing</subject><subject>Immunoassay - methods</subject><subject>Laboratory Medicine</subject><subject>Limit of Detection</subject><subject>Methods</subject><subject>microparticles</subject><subject>Microspheres</subject><subject>Monitoring/Environmental Analysis</subject><subject>Mycotoxins</subject><subject>Nanocrystals</subject><subject>Nanoparticles - chemistry</subject><subject>Ochratoxin A</subject><subject>Ochratoxins - analysis</subject><subject>Paper in Forefront</subject><subject>Safety and security measures</subject><subject>Signal to noise ratio</subject><subject>Upconversion</subject><subject>Zearalenone</subject><subject>Zearalenone - analysis</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkk1v1DAQhiMEoqXwBzigSFy4pMzYsZM9loovqRIXOFuOPd66JHawk4ry6_HullYgBPLBI88zr2bGb1U9RzhFgO51BmAoG8BNA4yBbPBBdYwS-4ZJAQ_v4pYdVU9yvgJA0aN8XB1x3AjeIT-u4httvm5TXINtXCKq19nEcE0p-xgaCiZasvXkTYp5vqREuXYx1dONiUv87kNtaSGzFLgedC5oCXSd9Oxtfe3zqkf_Q-_TEy2X0T6tHjk9Znp2e59UX969_Xz-obn49P7j-dlFYwSypekMGNkjWWoNcLtpoXdkeqk3DjqHUlsxaM3FYFjfEhscDeiE1si57cps_KR6ddCdU_y2Ul7U5LOhcdSB4poVawFawVrW_x_lLcrCIxT05R_oVVxTKIPsqB67sli8p7Z6JOWDi0vSZieqziSyXoDYd3j6F6ocS2XdMZDz5f23AnYo2P1FTuTUnPyk041CUDtDqIMhVDGE2htC7Xp5cdvxOkxk70p-OaAA_ADkkgpbSvcj_UP2J3wXwIk</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Yang, Minye</creator><creator>Cui, Meihui</creator><creator>Wang, Weixun</creator><creator>Yang, Yaodong</creator><creator>Chang, Jin</creator><creator>Hao, Jianye</creator><creator>Wang, Hanjie</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-9400-814X</orcidid></search><sort><creationdate>2020</creationdate><title>Background-free upconversion-encoded microspheres for mycotoxin detection based on a rapid visualization method</title><author>Yang, Minye ; Cui, Meihui ; Wang, Weixun ; Yang, Yaodong ; Chang, Jin ; Hao, Jianye ; Wang, Hanjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-7c0c681ede4c03d9408fec86a9f07f16ad5baa35bc284e2bfeb1f5aa133d79533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Analytical Chemistry</topic><topic>Antibodies</topic><topic>Background noise</topic><topic>Biochemistry</topic><topic>blue light</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Coding</topic><topic>Contaminants</topic><topic>detection limit</topic><topic>Excitation</topic><topic>Fluorescence</topic><topic>Fluorescence microscopy</topic><topic>Food</topic><topic>Food contamination</topic><topic>Food Contamination - analysis</topic><topic>Food quality</topic><topic>Food safety</topic><topic>Food Science</topic><topic>Health aspects</topic><topic>Health hazards</topic><topic>Image analysis</topic><topic>Image detection</topic><topic>Image processing</topic><topic>Immunoassay - methods</topic><topic>Laboratory Medicine</topic><topic>Limit of Detection</topic><topic>Methods</topic><topic>microparticles</topic><topic>Microspheres</topic><topic>Monitoring/Environmental Analysis</topic><topic>Mycotoxins</topic><topic>Nanocrystals</topic><topic>Nanoparticles - chemistry</topic><topic>Ochratoxin A</topic><topic>Ochratoxins - analysis</topic><topic>Paper in Forefront</topic><topic>Safety and security measures</topic><topic>Signal to noise ratio</topic><topic>Upconversion</topic><topic>Zearalenone</topic><topic>Zearalenone - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Minye</creatorcontrib><creatorcontrib>Cui, Meihui</creatorcontrib><creatorcontrib>Wang, Weixun</creatorcontrib><creatorcontrib>Yang, Yaodong</creatorcontrib><creatorcontrib>Chang, Jin</creatorcontrib><creatorcontrib>Hao, Jianye</creatorcontrib><creatorcontrib>Wang, Hanjie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Minye</au><au>Cui, Meihui</au><au>Wang, Weixun</au><au>Yang, Yaodong</au><au>Chang, Jin</au><au>Hao, Jianye</au><au>Wang, Hanjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Background-free upconversion-encoded microspheres for mycotoxin detection based on a rapid visualization method</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2020</date><risdate>2020</risdate><volume>412</volume><issue>1</issue><spage>81</spage><epage>91</epage><pages>81-91</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>Methods for detecting mycotoxins are very important because of the great health hazards of mycotoxins. However, there is a high background and low signal-to-noise ratio in real-time sensing, and therefore it is difficult to meet the fast, accurate, and convenient requirements for control of food quality. Here we constructed a quantitative fluorescence image analysis based on multicolor upconversion nanocrystal (UCN)-encoded microspheres for detection of ochratoxin A and zearalenone. The background-free encoding image signal of UCN-doped microspheres was captured by fluorescence microscopy under near-infrared excitation, whereas the detection image signal of phycoerythrin-labeled secondary antibodies conjugated to the microspheres was captured under blue light excitation. We custom-wrote an algorithm to analyze the two images for the same sample in 10 s, and only the gray value in the red channel of the secondary probe confirmed the quantity. The results showed that this novel detection platform performed feasible and reliable fluorescence image measurements by this method. Additionally, the limit of detection of was 0.34721 ng/mL for ochratoxin A and 0.41162 ng/mL for zearalenone. We envision that this UCN encoding strategy will be usefully applied for fast, accurate, and convenient testing of multiple food contaminants to ensure the safety of the food.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31953713</pmid><doi>10.1007/s00216-019-02206-1</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9400-814X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-2642 |
ispartof | Analytical and bioanalytical chemistry, 2020, Vol.412 (1), p.81-91 |
issn | 1618-2642 1618-2650 |
language | eng |
recordid | cdi_proquest_miscellaneous_2400452428 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Algorithms Analytical Chemistry Antibodies Background noise Biochemistry blue light Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Coding Contaminants detection limit Excitation Fluorescence Fluorescence microscopy Food Food contamination Food Contamination - analysis Food quality Food safety Food Science Health aspects Health hazards Image analysis Image detection Image processing Immunoassay - methods Laboratory Medicine Limit of Detection Methods microparticles Microspheres Monitoring/Environmental Analysis Mycotoxins Nanocrystals Nanoparticles - chemistry Ochratoxin A Ochratoxins - analysis Paper in Forefront Safety and security measures Signal to noise ratio Upconversion Zearalenone Zearalenone - analysis |
title | Background-free upconversion-encoded microspheres for mycotoxin detection based on a rapid visualization method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A19%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Background-free%20upconversion-encoded%20microspheres%20for%20mycotoxin%20detection%20based%20on%20a%20rapid%20visualization%20method&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Yang,%20Minye&rft.date=2020&rft.volume=412&rft.issue=1&rft.spage=81&rft.epage=91&rft.pages=81-91&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-019-02206-1&rft_dat=%3Cgale_proqu%3EA612850553%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348173191&rft_id=info:pmid/31953713&rft_galeid=A612850553&rfr_iscdi=true |