Changes in abundance and composition of nitrifying communities in barley (Hordeum vulgare L.) rhizosphere and bulk soils over the growth period following combined biochar and urea amendment

To understand the effects of biochar and urea on soil N availability and plant growth, we conducted a pot experiment growing barley ( Hordeum vulgare L.) under six treatments: control (N0), soil with 30 g kg −1 biochar (N0B), soil with 0.23 g kg −1 urea (N1), soil with 0.23 g kg −1 urea and 30 g kg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biology and fertility of soils 2020-02, Vol.56 (2), p.169-183
Hauptverfasser: Yu, Lu, Homyak, Peter M., Kang, Xiaoxi, Brookes, Philip C., Ye, Yikai, Lin, Yeneng, Muhammad, Afzal, Xu, Jianming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 183
container_issue 2
container_start_page 169
container_title Biology and fertility of soils
container_volume 56
creator Yu, Lu
Homyak, Peter M.
Kang, Xiaoxi
Brookes, Philip C.
Ye, Yikai
Lin, Yeneng
Muhammad, Afzal
Xu, Jianming
description To understand the effects of biochar and urea on soil N availability and plant growth, we conducted a pot experiment growing barley ( Hordeum vulgare L.) under six treatments: control (N0), soil with 30 g kg −1 biochar (N0B), soil with 0.23 g kg −1 urea (N1), soil with 0.23 g kg −1 urea and 30 g kg −1 biochar (N1B), soil with 0.46 g kg −1 urea (N2), and soil with 0.46 g kg −1 urea and 30 g kg −1 biochar (N2B). The nitrifying community abundance and compositions in rhizosphere and bulk soils were analyzed using quantitative polymerase chain reaction (qPCR) and amplicon-based Illumina Hiseq sequencing. Adding urea with biochar (N1B) produced the greatest increase in above- and belowground plant biomass, followed by doubling the amount of urea with biochar (N2B); both treatments raised pH ( p  
doi_str_mv 10.1007/s00374-019-01410-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2400446414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2400446414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-ba39cd3e8dfd623e91ec439073e125740b4a9712527bee38446aff90ea561ab73</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EEsPAC7CyxKYsUvyXOF6iEaVII3UDa8tJbiYujh3suNX03Xg33KYSEgsWV7Z1z3eudQ9C7ym5pITIT4kQLkVFqColKKmaF2hHBWcVka16iXaEyrZismGv0ZuUbgmhdUvVDv0-TMafIGHrsemyH4zvARs_4D7MS0h2tcHjMGJv12jHs_Wnx86cy9tuWGeigzO-uA5xgDzju-xOJgI-Xn7EcbIPIS0TxM20y-4nTsG6hMMdRLxOgE8x3K8TXiDaMOAxOBfun8d01kOBbOgnE58McgSDzQx-KLW-Ra9G4xK8ez736MfVl--H6-p48_Xb4fOx6nnN1qozXPUDh3YYh4ZxUBR6wRWRHCirpSCdMEqWK5MdAG-FaMw4KgKmbqjpJN-ji813ieFXhrTq2aYenDMeQk6aCUIKJMrG9-jDP9LbkKMvv9OMC1FLJRUpKrap-hhSijDqJdrZxLOmRD8mqrdEdUlUPyWqmwLxDUpFXEKLf63_Q_0BNjynZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344579790</pqid></control><display><type>article</type><title>Changes in abundance and composition of nitrifying communities in barley (Hordeum vulgare L.) rhizosphere and bulk soils over the growth period following combined biochar and urea amendment</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yu, Lu ; Homyak, Peter M. ; Kang, Xiaoxi ; Brookes, Philip C. ; Ye, Yikai ; Lin, Yeneng ; Muhammad, Afzal ; Xu, Jianming</creator><creatorcontrib>Yu, Lu ; Homyak, Peter M. ; Kang, Xiaoxi ; Brookes, Philip C. ; Ye, Yikai ; Lin, Yeneng ; Muhammad, Afzal ; Xu, Jianming</creatorcontrib><description>To understand the effects of biochar and urea on soil N availability and plant growth, we conducted a pot experiment growing barley ( Hordeum vulgare L.) under six treatments: control (N0), soil with 30 g kg −1 biochar (N0B), soil with 0.23 g kg −1 urea (N1), soil with 0.23 g kg −1 urea and 30 g kg −1 biochar (N1B), soil with 0.46 g kg −1 urea (N2), and soil with 0.46 g kg −1 urea and 30 g kg −1 biochar (N2B). The nitrifying community abundance and compositions in rhizosphere and bulk soils were analyzed using quantitative polymerase chain reaction (qPCR) and amplicon-based Illumina Hiseq sequencing. Adding urea with biochar (N1B) produced the greatest increase in above- and belowground plant biomass, followed by doubling the amount of urea with biochar (N2B); both treatments raised pH ( p  &lt; 0.001) and lowered extractable N in the rhizosphere ( p  &lt; 0.05). N1B treatment produced the greatest increase in ammonia-oxidizing bacteria (AOB) amoA gene copies, presumably because the combined amendment raised soil pH, which favored AOB access to NH 4 + . Nitrifier sequences were selected after blasting with reported nitrifiers in NCBI (similarity ≥ 97%). Nitrosospira dominated AOB communities during the plant seedling stage; however, during the mature stage, Nitrosomonas dominated over Nitrosospira and the nitrite-oxidizing bacteria (NOB) community became diverse. Redundancy analysis indicated that nitrifying community composition was affected by multiple soil properties, including N availability (i.e., exchangeable NH 4 + and NO 3 − ) and soil chemistry (i.e., pH, dissolved organic C, and exchangeable base cations). Our research suggests a positive application of combining biochar with urea in improving N bioavailability and promoting plant growth in the acidic soil.</description><identifier>ISSN: 0178-2762</identifier><identifier>EISSN: 1432-0789</identifier><identifier>DOI: 10.1007/s00374-019-01410-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Abundance ; acid soils ; Acidic soils ; Agriculture ; Ammonia ; Ammonia-oxidizing bacteria ; ammonium ; AmoA gene ; Availability ; Bacteria ; Barley ; Bioavailability ; biochar ; Biomedical and Life Sciences ; Blasting ; Cation exchanging ; Cations ; Charcoal ; chemical bases ; Community composition ; community structure ; Composition ; dissolved organic carbon ; genes ; Hordeum vulgare ; Life Sciences ; nitrates ; Nitrification ; nitrifying bacteria ; nitrogen-fixing bacteria ; Nitrosomonas ; Nitrosospira ; Nucleotide sequence ; Organic chemistry ; Original Paper ; Oxidation ; PCR ; pH effects ; phytomass ; Plant biomass ; Plant communities ; Plant growth ; Polymerase chain reaction ; quantitative polymerase chain reaction ; Redundancy ; Rhizosphere ; Seedlings ; Soil analysis ; Soil chemistry ; Soil pH ; Soil properties ; Soil Science &amp; Conservation ; Soils ; Urea</subject><ispartof>Biology and fertility of soils, 2020-02, Vol.56 (2), p.169-183</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Biology and Fertility of Soils is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-ba39cd3e8dfd623e91ec439073e125740b4a9712527bee38446aff90ea561ab73</citedby><cites>FETCH-LOGICAL-c352t-ba39cd3e8dfd623e91ec439073e125740b4a9712527bee38446aff90ea561ab73</cites><orcidid>0000-0002-2954-9764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00374-019-01410-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00374-019-01410-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Yu, Lu</creatorcontrib><creatorcontrib>Homyak, Peter M.</creatorcontrib><creatorcontrib>Kang, Xiaoxi</creatorcontrib><creatorcontrib>Brookes, Philip C.</creatorcontrib><creatorcontrib>Ye, Yikai</creatorcontrib><creatorcontrib>Lin, Yeneng</creatorcontrib><creatorcontrib>Muhammad, Afzal</creatorcontrib><creatorcontrib>Xu, Jianming</creatorcontrib><title>Changes in abundance and composition of nitrifying communities in barley (Hordeum vulgare L.) rhizosphere and bulk soils over the growth period following combined biochar and urea amendment</title><title>Biology and fertility of soils</title><addtitle>Biol Fertil Soils</addtitle><description>To understand the effects of biochar and urea on soil N availability and plant growth, we conducted a pot experiment growing barley ( Hordeum vulgare L.) under six treatments: control (N0), soil with 30 g kg −1 biochar (N0B), soil with 0.23 g kg −1 urea (N1), soil with 0.23 g kg −1 urea and 30 g kg −1 biochar (N1B), soil with 0.46 g kg −1 urea (N2), and soil with 0.46 g kg −1 urea and 30 g kg −1 biochar (N2B). The nitrifying community abundance and compositions in rhizosphere and bulk soils were analyzed using quantitative polymerase chain reaction (qPCR) and amplicon-based Illumina Hiseq sequencing. Adding urea with biochar (N1B) produced the greatest increase in above- and belowground plant biomass, followed by doubling the amount of urea with biochar (N2B); both treatments raised pH ( p  &lt; 0.001) and lowered extractable N in the rhizosphere ( p  &lt; 0.05). N1B treatment produced the greatest increase in ammonia-oxidizing bacteria (AOB) amoA gene copies, presumably because the combined amendment raised soil pH, which favored AOB access to NH 4 + . Nitrifier sequences were selected after blasting with reported nitrifiers in NCBI (similarity ≥ 97%). Nitrosospira dominated AOB communities during the plant seedling stage; however, during the mature stage, Nitrosomonas dominated over Nitrosospira and the nitrite-oxidizing bacteria (NOB) community became diverse. Redundancy analysis indicated that nitrifying community composition was affected by multiple soil properties, including N availability (i.e., exchangeable NH 4 + and NO 3 − ) and soil chemistry (i.e., pH, dissolved organic C, and exchangeable base cations). Our research suggests a positive application of combining biochar with urea in improving N bioavailability and promoting plant growth in the acidic soil.</description><subject>Abundance</subject><subject>acid soils</subject><subject>Acidic soils</subject><subject>Agriculture</subject><subject>Ammonia</subject><subject>Ammonia-oxidizing bacteria</subject><subject>ammonium</subject><subject>AmoA gene</subject><subject>Availability</subject><subject>Bacteria</subject><subject>Barley</subject><subject>Bioavailability</subject><subject>biochar</subject><subject>Biomedical and Life Sciences</subject><subject>Blasting</subject><subject>Cation exchanging</subject><subject>Cations</subject><subject>Charcoal</subject><subject>chemical bases</subject><subject>Community composition</subject><subject>community structure</subject><subject>Composition</subject><subject>dissolved organic carbon</subject><subject>genes</subject><subject>Hordeum vulgare</subject><subject>Life Sciences</subject><subject>nitrates</subject><subject>Nitrification</subject><subject>nitrifying bacteria</subject><subject>nitrogen-fixing bacteria</subject><subject>Nitrosomonas</subject><subject>Nitrosospira</subject><subject>Nucleotide sequence</subject><subject>Organic chemistry</subject><subject>Original Paper</subject><subject>Oxidation</subject><subject>PCR</subject><subject>pH effects</subject><subject>phytomass</subject><subject>Plant biomass</subject><subject>Plant communities</subject><subject>Plant growth</subject><subject>Polymerase chain reaction</subject><subject>quantitative polymerase chain reaction</subject><subject>Redundancy</subject><subject>Rhizosphere</subject><subject>Seedlings</subject><subject>Soil analysis</subject><subject>Soil chemistry</subject><subject>Soil pH</subject><subject>Soil properties</subject><subject>Soil Science &amp; Conservation</subject><subject>Soils</subject><subject>Urea</subject><issn>0178-2762</issn><issn>1432-0789</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1u1DAUhS0EEsPAC7CyxKYsUvyXOF6iEaVII3UDa8tJbiYujh3suNX03Xg33KYSEgsWV7Z1z3eudQ9C7ym5pITIT4kQLkVFqColKKmaF2hHBWcVka16iXaEyrZismGv0ZuUbgmhdUvVDv0-TMafIGHrsemyH4zvARs_4D7MS0h2tcHjMGJv12jHs_Wnx86cy9tuWGeigzO-uA5xgDzju-xOJgI-Xn7EcbIPIS0TxM20y-4nTsG6hMMdRLxOgE8x3K8TXiDaMOAxOBfun8d01kOBbOgnE58McgSDzQx-KLW-Ra9G4xK8ez736MfVl--H6-p48_Xb4fOx6nnN1qozXPUDh3YYh4ZxUBR6wRWRHCirpSCdMEqWK5MdAG-FaMw4KgKmbqjpJN-ji813ieFXhrTq2aYenDMeQk6aCUIKJMrG9-jDP9LbkKMvv9OMC1FLJRUpKrap-hhSijDqJdrZxLOmRD8mqrdEdUlUPyWqmwLxDUpFXEKLf63_Q_0BNjynZA</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Yu, Lu</creator><creator>Homyak, Peter M.</creator><creator>Kang, Xiaoxi</creator><creator>Brookes, Philip C.</creator><creator>Ye, Yikai</creator><creator>Lin, Yeneng</creator><creator>Muhammad, Afzal</creator><creator>Xu, Jianming</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7T7</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M0K</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-2954-9764</orcidid></search><sort><creationdate>20200201</creationdate><title>Changes in abundance and composition of nitrifying communities in barley (Hordeum vulgare L.) rhizosphere and bulk soils over the growth period following combined biochar and urea amendment</title><author>Yu, Lu ; Homyak, Peter M. ; Kang, Xiaoxi ; Brookes, Philip C. ; Ye, Yikai ; Lin, Yeneng ; Muhammad, Afzal ; Xu, Jianming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-ba39cd3e8dfd623e91ec439073e125740b4a9712527bee38446aff90ea561ab73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abundance</topic><topic>acid soils</topic><topic>Acidic soils</topic><topic>Agriculture</topic><topic>Ammonia</topic><topic>Ammonia-oxidizing bacteria</topic><topic>ammonium</topic><topic>AmoA gene</topic><topic>Availability</topic><topic>Bacteria</topic><topic>Barley</topic><topic>Bioavailability</topic><topic>biochar</topic><topic>Biomedical and Life Sciences</topic><topic>Blasting</topic><topic>Cation exchanging</topic><topic>Cations</topic><topic>Charcoal</topic><topic>chemical bases</topic><topic>Community composition</topic><topic>community structure</topic><topic>Composition</topic><topic>dissolved organic carbon</topic><topic>genes</topic><topic>Hordeum vulgare</topic><topic>Life Sciences</topic><topic>nitrates</topic><topic>Nitrification</topic><topic>nitrifying bacteria</topic><topic>nitrogen-fixing bacteria</topic><topic>Nitrosomonas</topic><topic>Nitrosospira</topic><topic>Nucleotide sequence</topic><topic>Organic chemistry</topic><topic>Original Paper</topic><topic>Oxidation</topic><topic>PCR</topic><topic>pH effects</topic><topic>phytomass</topic><topic>Plant biomass</topic><topic>Plant communities</topic><topic>Plant growth</topic><topic>Polymerase chain reaction</topic><topic>quantitative polymerase chain reaction</topic><topic>Redundancy</topic><topic>Rhizosphere</topic><topic>Seedlings</topic><topic>Soil analysis</topic><topic>Soil chemistry</topic><topic>Soil pH</topic><topic>Soil properties</topic><topic>Soil Science &amp; Conservation</topic><topic>Soils</topic><topic>Urea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Lu</creatorcontrib><creatorcontrib>Homyak, Peter M.</creatorcontrib><creatorcontrib>Kang, Xiaoxi</creatorcontrib><creatorcontrib>Brookes, Philip C.</creatorcontrib><creatorcontrib>Ye, Yikai</creatorcontrib><creatorcontrib>Lin, Yeneng</creatorcontrib><creatorcontrib>Muhammad, Afzal</creatorcontrib><creatorcontrib>Xu, Jianming</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Biology and fertility of soils</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Lu</au><au>Homyak, Peter M.</au><au>Kang, Xiaoxi</au><au>Brookes, Philip C.</au><au>Ye, Yikai</au><au>Lin, Yeneng</au><au>Muhammad, Afzal</au><au>Xu, Jianming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Changes in abundance and composition of nitrifying communities in barley (Hordeum vulgare L.) rhizosphere and bulk soils over the growth period following combined biochar and urea amendment</atitle><jtitle>Biology and fertility of soils</jtitle><stitle>Biol Fertil Soils</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>56</volume><issue>2</issue><spage>169</spage><epage>183</epage><pages>169-183</pages><issn>0178-2762</issn><eissn>1432-0789</eissn><abstract>To understand the effects of biochar and urea on soil N availability and plant growth, we conducted a pot experiment growing barley ( Hordeum vulgare L.) under six treatments: control (N0), soil with 30 g kg −1 biochar (N0B), soil with 0.23 g kg −1 urea (N1), soil with 0.23 g kg −1 urea and 30 g kg −1 biochar (N1B), soil with 0.46 g kg −1 urea (N2), and soil with 0.46 g kg −1 urea and 30 g kg −1 biochar (N2B). The nitrifying community abundance and compositions in rhizosphere and bulk soils were analyzed using quantitative polymerase chain reaction (qPCR) and amplicon-based Illumina Hiseq sequencing. Adding urea with biochar (N1B) produced the greatest increase in above- and belowground plant biomass, followed by doubling the amount of urea with biochar (N2B); both treatments raised pH ( p  &lt; 0.001) and lowered extractable N in the rhizosphere ( p  &lt; 0.05). N1B treatment produced the greatest increase in ammonia-oxidizing bacteria (AOB) amoA gene copies, presumably because the combined amendment raised soil pH, which favored AOB access to NH 4 + . Nitrifier sequences were selected after blasting with reported nitrifiers in NCBI (similarity ≥ 97%). Nitrosospira dominated AOB communities during the plant seedling stage; however, during the mature stage, Nitrosomonas dominated over Nitrosospira and the nitrite-oxidizing bacteria (NOB) community became diverse. Redundancy analysis indicated that nitrifying community composition was affected by multiple soil properties, including N availability (i.e., exchangeable NH 4 + and NO 3 − ) and soil chemistry (i.e., pH, dissolved organic C, and exchangeable base cations). Our research suggests a positive application of combining biochar with urea in improving N bioavailability and promoting plant growth in the acidic soil.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00374-019-01410-6</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2954-9764</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0178-2762
ispartof Biology and fertility of soils, 2020-02, Vol.56 (2), p.169-183
issn 0178-2762
1432-0789
language eng
recordid cdi_proquest_miscellaneous_2400446414
source SpringerLink Journals - AutoHoldings
subjects Abundance
acid soils
Acidic soils
Agriculture
Ammonia
Ammonia-oxidizing bacteria
ammonium
AmoA gene
Availability
Bacteria
Barley
Bioavailability
biochar
Biomedical and Life Sciences
Blasting
Cation exchanging
Cations
Charcoal
chemical bases
Community composition
community structure
Composition
dissolved organic carbon
genes
Hordeum vulgare
Life Sciences
nitrates
Nitrification
nitrifying bacteria
nitrogen-fixing bacteria
Nitrosomonas
Nitrosospira
Nucleotide sequence
Organic chemistry
Original Paper
Oxidation
PCR
pH effects
phytomass
Plant biomass
Plant communities
Plant growth
Polymerase chain reaction
quantitative polymerase chain reaction
Redundancy
Rhizosphere
Seedlings
Soil analysis
Soil chemistry
Soil pH
Soil properties
Soil Science & Conservation
Soils
Urea
title Changes in abundance and composition of nitrifying communities in barley (Hordeum vulgare L.) rhizosphere and bulk soils over the growth period following combined biochar and urea amendment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A39%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Changes%20in%20abundance%20and%20composition%20of%20nitrifying%20communities%20in%20barley%20(Hordeum%20vulgare%20L.)%20rhizosphere%20and%20bulk%20soils%20over%20the%20growth%20period%20following%20combined%20biochar%20and%20urea%20amendment&rft.jtitle=Biology%20and%20fertility%20of%20soils&rft.au=Yu,%20Lu&rft.date=2020-02-01&rft.volume=56&rft.issue=2&rft.spage=169&rft.epage=183&rft.pages=169-183&rft.issn=0178-2762&rft.eissn=1432-0789&rft_id=info:doi/10.1007/s00374-019-01410-6&rft_dat=%3Cproquest_cross%3E2400446414%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344579790&rft_id=info:pmid/&rfr_iscdi=true