Sandwich Photothermal Membrane with Confined Hierarchical Carbon Cells Enabling High‐Efficiency Solar Steam Generation

Solar‐driven vaporization is a sustainable solution to water and energy scarcity. However, most of the present evaporators are still suffering from inefficient utilization of converted thermal energy. Herein, a universal sandwich membrane strategy is demonstrated by confining the hierarchical porous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2020-06, Vol.16 (23), p.e2000573-n/a
Hauptverfasser: Tian, Cheng, Liu, Jing, Ruan, Ruofan, Tian, Xinlong, Lai, Xiaoyong, Xing, Lei, Su, Yaqiong, Huang, Wei, Cao, Yang, Tu, Jinchun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page e2000573
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 16
creator Tian, Cheng
Liu, Jing
Ruan, Ruofan
Tian, Xinlong
Lai, Xiaoyong
Xing, Lei
Su, Yaqiong
Huang, Wei
Cao, Yang
Tu, Jinchun
description Solar‐driven vaporization is a sustainable solution to water and energy scarcity. However, most of the present evaporators are still suffering from inefficient utilization of converted thermal energy. Herein, a universal sandwich membrane strategy is demonstrated by confining the hierarchical porous carbon cells in two energy barriers to obtain a high‐efficiency evaporator with a rapid water evaporation rate of 1.87 kg m−2 h−1 under 1 sun illumination, which is among the highest performance for carbon‐based and wood‐based evaporators. The significantly enhanced evaporation rate is mainly attributed to the inherently optimized porous evaporation mode derived from the hierarchical hollow structures of pollen carbon cells, and the synergistically regulated water transporting and thermal management performance of the sandwich membrane. Moreover, the constructed sandwich membrane also exhibits excellent self‐regenerating performance in simulated seawater and high salinity water. The developed device can maintain an average evaporation rate of 4.3 L m−2 day−1 in a 25 day consecutive outdoor test. A sandwich photothermal membrane is prepared by confining the hierarchical porous carbon cells in two energy barriers to achieve a rapid water evaporation rate of 1.87 kg m−2 h−1 under 1 sun illumination. The significantly enhanced evaporation rate is mainly attributed to the inherently optimized micropore evaporation mode, and the synergistically regulated water transporting and thermal management performance.
doi_str_mv 10.1002/smll.202000573
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2399835473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2412013585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4123-1debe7aafba6149f3c6bb39c1af9d0dbd178efd33691351dfee6d66f2d4e94cd3</originalsourceid><addsrcrecordid>eNqFkctuEzEUhkcIREthyxJZYsMmwZeJZ7xEo9AipQIpsLZ8Oe648tjFnijNjkfgGXkSXKUEiQ2r48Xn7_xHf9O8JnhJMKbvyxTCkmKKMV517ElzTjhhC95T8fT0JviseVHKLcaM0LZ73pwxyrqeEX7e3G9VtHtvRvRlTHOaR8iTCugaJp1VBLT384iGFJ2PYNGVh6yyGb2pzKCyThENEEJB66h08PGmIjfjrx8_18554yGaA9qmoDLazqAmdAmxGmaf4svmmVOhwKvHedF8-7j-OlwtNp8vPw0fNgvTEsoWxIKGTimnFSetcMxwrZkwRDlhsdWWdD04yxgXhK2IdQDccu6obUG0xrKL5t3Re5fT9x2UWU6-mJq5Xpd2RVImRM9Wbccq-vYf9DbtcqzpJK1hcF3Qryq1PFImp1IyOHmX_aTyQRIsHzqRD53IUyf1w5tH7U5PYE_4nxIqII7A3gc4_Ecnt9ebzV_5b0s4m4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412013585</pqid></control><display><type>article</type><title>Sandwich Photothermal Membrane with Confined Hierarchical Carbon Cells Enabling High‐Efficiency Solar Steam Generation</title><source>Wiley Online Library All Journals</source><creator>Tian, Cheng ; Liu, Jing ; Ruan, Ruofan ; Tian, Xinlong ; Lai, Xiaoyong ; Xing, Lei ; Su, Yaqiong ; Huang, Wei ; Cao, Yang ; Tu, Jinchun</creator><creatorcontrib>Tian, Cheng ; Liu, Jing ; Ruan, Ruofan ; Tian, Xinlong ; Lai, Xiaoyong ; Xing, Lei ; Su, Yaqiong ; Huang, Wei ; Cao, Yang ; Tu, Jinchun</creatorcontrib><description>Solar‐driven vaporization is a sustainable solution to water and energy scarcity. However, most of the present evaporators are still suffering from inefficient utilization of converted thermal energy. Herein, a universal sandwich membrane strategy is demonstrated by confining the hierarchical porous carbon cells in two energy barriers to obtain a high‐efficiency evaporator with a rapid water evaporation rate of 1.87 kg m−2 h−1 under 1 sun illumination, which is among the highest performance for carbon‐based and wood‐based evaporators. The significantly enhanced evaporation rate is mainly attributed to the inherently optimized porous evaporation mode derived from the hierarchical hollow structures of pollen carbon cells, and the synergistically regulated water transporting and thermal management performance of the sandwich membrane. Moreover, the constructed sandwich membrane also exhibits excellent self‐regenerating performance in simulated seawater and high salinity water. The developed device can maintain an average evaporation rate of 4.3 L m−2 day−1 in a 25 day consecutive outdoor test. A sandwich photothermal membrane is prepared by confining the hierarchical porous carbon cells in two energy barriers to achieve a rapid water evaporation rate of 1.87 kg m−2 h−1 under 1 sun illumination. The significantly enhanced evaporation rate is mainly attributed to the inherently optimized micropore evaporation mode, and the synergistically regulated water transporting and thermal management performance.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202000573</identifier><identifier>PMID: 32378316</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carbon ; energy confinement ; Energy conversion efficiency ; Evaporation ; Evaporation rate ; Evaporators ; hierarchical carbon cells ; Membranes ; Nanotechnology ; sandwich photothermal membranes ; Sandwich structures ; Seawater ; solar desalination ; Steam generation ; Structural hierarchy ; Thermal energy ; Thermal management ; Thermal utilization ; Vaporization</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2020-06, Vol.16 (23), p.e2000573-n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4123-1debe7aafba6149f3c6bb39c1af9d0dbd178efd33691351dfee6d66f2d4e94cd3</citedby><cites>FETCH-LOGICAL-c4123-1debe7aafba6149f3c6bb39c1af9d0dbd178efd33691351dfee6d66f2d4e94cd3</cites><orcidid>0000-0001-7274-5958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202000573$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202000573$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32378316$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tian, Cheng</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Ruan, Ruofan</creatorcontrib><creatorcontrib>Tian, Xinlong</creatorcontrib><creatorcontrib>Lai, Xiaoyong</creatorcontrib><creatorcontrib>Xing, Lei</creatorcontrib><creatorcontrib>Su, Yaqiong</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Cao, Yang</creatorcontrib><creatorcontrib>Tu, Jinchun</creatorcontrib><title>Sandwich Photothermal Membrane with Confined Hierarchical Carbon Cells Enabling High‐Efficiency Solar Steam Generation</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Solar‐driven vaporization is a sustainable solution to water and energy scarcity. However, most of the present evaporators are still suffering from inefficient utilization of converted thermal energy. Herein, a universal sandwich membrane strategy is demonstrated by confining the hierarchical porous carbon cells in two energy barriers to obtain a high‐efficiency evaporator with a rapid water evaporation rate of 1.87 kg m−2 h−1 under 1 sun illumination, which is among the highest performance for carbon‐based and wood‐based evaporators. The significantly enhanced evaporation rate is mainly attributed to the inherently optimized porous evaporation mode derived from the hierarchical hollow structures of pollen carbon cells, and the synergistically regulated water transporting and thermal management performance of the sandwich membrane. Moreover, the constructed sandwich membrane also exhibits excellent self‐regenerating performance in simulated seawater and high salinity water. The developed device can maintain an average evaporation rate of 4.3 L m−2 day−1 in a 25 day consecutive outdoor test. A sandwich photothermal membrane is prepared by confining the hierarchical porous carbon cells in two energy barriers to achieve a rapid water evaporation rate of 1.87 kg m−2 h−1 under 1 sun illumination. The significantly enhanced evaporation rate is mainly attributed to the inherently optimized micropore evaporation mode, and the synergistically regulated water transporting and thermal management performance.</description><subject>Carbon</subject><subject>energy confinement</subject><subject>Energy conversion efficiency</subject><subject>Evaporation</subject><subject>Evaporation rate</subject><subject>Evaporators</subject><subject>hierarchical carbon cells</subject><subject>Membranes</subject><subject>Nanotechnology</subject><subject>sandwich photothermal membranes</subject><subject>Sandwich structures</subject><subject>Seawater</subject><subject>solar desalination</subject><subject>Steam generation</subject><subject>Structural hierarchy</subject><subject>Thermal energy</subject><subject>Thermal management</subject><subject>Thermal utilization</subject><subject>Vaporization</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkctuEzEUhkcIREthyxJZYsMmwZeJZ7xEo9AipQIpsLZ8Oe648tjFnijNjkfgGXkSXKUEiQ2r48Xn7_xHf9O8JnhJMKbvyxTCkmKKMV517ElzTjhhC95T8fT0JviseVHKLcaM0LZ73pwxyrqeEX7e3G9VtHtvRvRlTHOaR8iTCugaJp1VBLT384iGFJ2PYNGVh6yyGb2pzKCyThENEEJB66h08PGmIjfjrx8_18554yGaA9qmoDLazqAmdAmxGmaf4svmmVOhwKvHedF8-7j-OlwtNp8vPw0fNgvTEsoWxIKGTimnFSetcMxwrZkwRDlhsdWWdD04yxgXhK2IdQDccu6obUG0xrKL5t3Re5fT9x2UWU6-mJq5Xpd2RVImRM9Wbccq-vYf9DbtcqzpJK1hcF3Qryq1PFImp1IyOHmX_aTyQRIsHzqRD53IUyf1w5tH7U5PYE_4nxIqII7A3gc4_Ecnt9ebzV_5b0s4m4Q</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Tian, Cheng</creator><creator>Liu, Jing</creator><creator>Ruan, Ruofan</creator><creator>Tian, Xinlong</creator><creator>Lai, Xiaoyong</creator><creator>Xing, Lei</creator><creator>Su, Yaqiong</creator><creator>Huang, Wei</creator><creator>Cao, Yang</creator><creator>Tu, Jinchun</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7274-5958</orcidid></search><sort><creationdate>20200601</creationdate><title>Sandwich Photothermal Membrane with Confined Hierarchical Carbon Cells Enabling High‐Efficiency Solar Steam Generation</title><author>Tian, Cheng ; Liu, Jing ; Ruan, Ruofan ; Tian, Xinlong ; Lai, Xiaoyong ; Xing, Lei ; Su, Yaqiong ; Huang, Wei ; Cao, Yang ; Tu, Jinchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4123-1debe7aafba6149f3c6bb39c1af9d0dbd178efd33691351dfee6d66f2d4e94cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon</topic><topic>energy confinement</topic><topic>Energy conversion efficiency</topic><topic>Evaporation</topic><topic>Evaporation rate</topic><topic>Evaporators</topic><topic>hierarchical carbon cells</topic><topic>Membranes</topic><topic>Nanotechnology</topic><topic>sandwich photothermal membranes</topic><topic>Sandwich structures</topic><topic>Seawater</topic><topic>solar desalination</topic><topic>Steam generation</topic><topic>Structural hierarchy</topic><topic>Thermal energy</topic><topic>Thermal management</topic><topic>Thermal utilization</topic><topic>Vaporization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Cheng</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Ruan, Ruofan</creatorcontrib><creatorcontrib>Tian, Xinlong</creatorcontrib><creatorcontrib>Lai, Xiaoyong</creatorcontrib><creatorcontrib>Xing, Lei</creatorcontrib><creatorcontrib>Su, Yaqiong</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Cao, Yang</creatorcontrib><creatorcontrib>Tu, Jinchun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Cheng</au><au>Liu, Jing</au><au>Ruan, Ruofan</au><au>Tian, Xinlong</au><au>Lai, Xiaoyong</au><au>Xing, Lei</au><au>Su, Yaqiong</au><au>Huang, Wei</au><au>Cao, Yang</au><au>Tu, Jinchun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sandwich Photothermal Membrane with Confined Hierarchical Carbon Cells Enabling High‐Efficiency Solar Steam Generation</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>16</volume><issue>23</issue><spage>e2000573</spage><epage>n/a</epage><pages>e2000573-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Solar‐driven vaporization is a sustainable solution to water and energy scarcity. However, most of the present evaporators are still suffering from inefficient utilization of converted thermal energy. Herein, a universal sandwich membrane strategy is demonstrated by confining the hierarchical porous carbon cells in two energy barriers to obtain a high‐efficiency evaporator with a rapid water evaporation rate of 1.87 kg m−2 h−1 under 1 sun illumination, which is among the highest performance for carbon‐based and wood‐based evaporators. The significantly enhanced evaporation rate is mainly attributed to the inherently optimized porous evaporation mode derived from the hierarchical hollow structures of pollen carbon cells, and the synergistically regulated water transporting and thermal management performance of the sandwich membrane. Moreover, the constructed sandwich membrane also exhibits excellent self‐regenerating performance in simulated seawater and high salinity water. The developed device can maintain an average evaporation rate of 4.3 L m−2 day−1 in a 25 day consecutive outdoor test. A sandwich photothermal membrane is prepared by confining the hierarchical porous carbon cells in two energy barriers to achieve a rapid water evaporation rate of 1.87 kg m−2 h−1 under 1 sun illumination. The significantly enhanced evaporation rate is mainly attributed to the inherently optimized micropore evaporation mode, and the synergistically regulated water transporting and thermal management performance.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32378316</pmid><doi>10.1002/smll.202000573</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7274-5958</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2020-06, Vol.16 (23), p.e2000573-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2399835473
source Wiley Online Library All Journals
subjects Carbon
energy confinement
Energy conversion efficiency
Evaporation
Evaporation rate
Evaporators
hierarchical carbon cells
Membranes
Nanotechnology
sandwich photothermal membranes
Sandwich structures
Seawater
solar desalination
Steam generation
Structural hierarchy
Thermal energy
Thermal management
Thermal utilization
Vaporization
title Sandwich Photothermal Membrane with Confined Hierarchical Carbon Cells Enabling High‐Efficiency Solar Steam Generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A38%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sandwich%20Photothermal%20Membrane%20with%20Confined%20Hierarchical%20Carbon%20Cells%20Enabling%20High%E2%80%90Efficiency%20Solar%20Steam%20Generation&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Tian,%20Cheng&rft.date=2020-06-01&rft.volume=16&rft.issue=23&rft.spage=e2000573&rft.epage=n/a&rft.pages=e2000573-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202000573&rft_dat=%3Cproquest_cross%3E2412013585%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412013585&rft_id=info:pmid/32378316&rfr_iscdi=true