Sandwich Photothermal Membrane with Confined Hierarchical Carbon Cells Enabling High‐Efficiency Solar Steam Generation
Solar‐driven vaporization is a sustainable solution to water and energy scarcity. However, most of the present evaporators are still suffering from inefficient utilization of converted thermal energy. Herein, a universal sandwich membrane strategy is demonstrated by confining the hierarchical porous...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2020-06, Vol.16 (23), p.e2000573-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 23 |
container_start_page | e2000573 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 16 |
creator | Tian, Cheng Liu, Jing Ruan, Ruofan Tian, Xinlong Lai, Xiaoyong Xing, Lei Su, Yaqiong Huang, Wei Cao, Yang Tu, Jinchun |
description | Solar‐driven vaporization is a sustainable solution to water and energy scarcity. However, most of the present evaporators are still suffering from inefficient utilization of converted thermal energy. Herein, a universal sandwich membrane strategy is demonstrated by confining the hierarchical porous carbon cells in two energy barriers to obtain a high‐efficiency evaporator with a rapid water evaporation rate of 1.87 kg m−2 h−1 under 1 sun illumination, which is among the highest performance for carbon‐based and wood‐based evaporators. The significantly enhanced evaporation rate is mainly attributed to the inherently optimized porous evaporation mode derived from the hierarchical hollow structures of pollen carbon cells, and the synergistically regulated water transporting and thermal management performance of the sandwich membrane. Moreover, the constructed sandwich membrane also exhibits excellent self‐regenerating performance in simulated seawater and high salinity water. The developed device can maintain an average evaporation rate of 4.3 L m−2 day−1 in a 25 day consecutive outdoor test.
A sandwich photothermal membrane is prepared by confining the hierarchical porous carbon cells in two energy barriers to achieve a rapid water evaporation rate of 1.87 kg m−2 h−1 under 1 sun illumination. The significantly enhanced evaporation rate is mainly attributed to the inherently optimized micropore evaporation mode, and the synergistically regulated water transporting and thermal management performance. |
doi_str_mv | 10.1002/smll.202000573 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2399835473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2412013585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4123-1debe7aafba6149f3c6bb39c1af9d0dbd178efd33691351dfee6d66f2d4e94cd3</originalsourceid><addsrcrecordid>eNqFkctuEzEUhkcIREthyxJZYsMmwZeJZ7xEo9AipQIpsLZ8Oe648tjFnijNjkfgGXkSXKUEiQ2r48Xn7_xHf9O8JnhJMKbvyxTCkmKKMV517ElzTjhhC95T8fT0JviseVHKLcaM0LZ73pwxyrqeEX7e3G9VtHtvRvRlTHOaR8iTCugaJp1VBLT384iGFJ2PYNGVh6yyGb2pzKCyThENEEJB66h08PGmIjfjrx8_18554yGaA9qmoDLazqAmdAmxGmaf4svmmVOhwKvHedF8-7j-OlwtNp8vPw0fNgvTEsoWxIKGTimnFSetcMxwrZkwRDlhsdWWdD04yxgXhK2IdQDccu6obUG0xrKL5t3Re5fT9x2UWU6-mJq5Xpd2RVImRM9Wbccq-vYf9DbtcqzpJK1hcF3Qryq1PFImp1IyOHmX_aTyQRIsHzqRD53IUyf1w5tH7U5PYE_4nxIqII7A3gc4_Ecnt9ebzV_5b0s4m4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412013585</pqid></control><display><type>article</type><title>Sandwich Photothermal Membrane with Confined Hierarchical Carbon Cells Enabling High‐Efficiency Solar Steam Generation</title><source>Wiley Online Library All Journals</source><creator>Tian, Cheng ; Liu, Jing ; Ruan, Ruofan ; Tian, Xinlong ; Lai, Xiaoyong ; Xing, Lei ; Su, Yaqiong ; Huang, Wei ; Cao, Yang ; Tu, Jinchun</creator><creatorcontrib>Tian, Cheng ; Liu, Jing ; Ruan, Ruofan ; Tian, Xinlong ; Lai, Xiaoyong ; Xing, Lei ; Su, Yaqiong ; Huang, Wei ; Cao, Yang ; Tu, Jinchun</creatorcontrib><description>Solar‐driven vaporization is a sustainable solution to water and energy scarcity. However, most of the present evaporators are still suffering from inefficient utilization of converted thermal energy. Herein, a universal sandwich membrane strategy is demonstrated by confining the hierarchical porous carbon cells in two energy barriers to obtain a high‐efficiency evaporator with a rapid water evaporation rate of 1.87 kg m−2 h−1 under 1 sun illumination, which is among the highest performance for carbon‐based and wood‐based evaporators. The significantly enhanced evaporation rate is mainly attributed to the inherently optimized porous evaporation mode derived from the hierarchical hollow structures of pollen carbon cells, and the synergistically regulated water transporting and thermal management performance of the sandwich membrane. Moreover, the constructed sandwich membrane also exhibits excellent self‐regenerating performance in simulated seawater and high salinity water. The developed device can maintain an average evaporation rate of 4.3 L m−2 day−1 in a 25 day consecutive outdoor test.
A sandwich photothermal membrane is prepared by confining the hierarchical porous carbon cells in two energy barriers to achieve a rapid water evaporation rate of 1.87 kg m−2 h−1 under 1 sun illumination. The significantly enhanced evaporation rate is mainly attributed to the inherently optimized micropore evaporation mode, and the synergistically regulated water transporting and thermal management performance.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202000573</identifier><identifier>PMID: 32378316</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carbon ; energy confinement ; Energy conversion efficiency ; Evaporation ; Evaporation rate ; Evaporators ; hierarchical carbon cells ; Membranes ; Nanotechnology ; sandwich photothermal membranes ; Sandwich structures ; Seawater ; solar desalination ; Steam generation ; Structural hierarchy ; Thermal energy ; Thermal management ; Thermal utilization ; Vaporization</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2020-06, Vol.16 (23), p.e2000573-n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4123-1debe7aafba6149f3c6bb39c1af9d0dbd178efd33691351dfee6d66f2d4e94cd3</citedby><cites>FETCH-LOGICAL-c4123-1debe7aafba6149f3c6bb39c1af9d0dbd178efd33691351dfee6d66f2d4e94cd3</cites><orcidid>0000-0001-7274-5958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202000573$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202000573$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32378316$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tian, Cheng</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Ruan, Ruofan</creatorcontrib><creatorcontrib>Tian, Xinlong</creatorcontrib><creatorcontrib>Lai, Xiaoyong</creatorcontrib><creatorcontrib>Xing, Lei</creatorcontrib><creatorcontrib>Su, Yaqiong</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Cao, Yang</creatorcontrib><creatorcontrib>Tu, Jinchun</creatorcontrib><title>Sandwich Photothermal Membrane with Confined Hierarchical Carbon Cells Enabling High‐Efficiency Solar Steam Generation</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Solar‐driven vaporization is a sustainable solution to water and energy scarcity. However, most of the present evaporators are still suffering from inefficient utilization of converted thermal energy. Herein, a universal sandwich membrane strategy is demonstrated by confining the hierarchical porous carbon cells in two energy barriers to obtain a high‐efficiency evaporator with a rapid water evaporation rate of 1.87 kg m−2 h−1 under 1 sun illumination, which is among the highest performance for carbon‐based and wood‐based evaporators. The significantly enhanced evaporation rate is mainly attributed to the inherently optimized porous evaporation mode derived from the hierarchical hollow structures of pollen carbon cells, and the synergistically regulated water transporting and thermal management performance of the sandwich membrane. Moreover, the constructed sandwich membrane also exhibits excellent self‐regenerating performance in simulated seawater and high salinity water. The developed device can maintain an average evaporation rate of 4.3 L m−2 day−1 in a 25 day consecutive outdoor test.
A sandwich photothermal membrane is prepared by confining the hierarchical porous carbon cells in two energy barriers to achieve a rapid water evaporation rate of 1.87 kg m−2 h−1 under 1 sun illumination. The significantly enhanced evaporation rate is mainly attributed to the inherently optimized micropore evaporation mode, and the synergistically regulated water transporting and thermal management performance.</description><subject>Carbon</subject><subject>energy confinement</subject><subject>Energy conversion efficiency</subject><subject>Evaporation</subject><subject>Evaporation rate</subject><subject>Evaporators</subject><subject>hierarchical carbon cells</subject><subject>Membranes</subject><subject>Nanotechnology</subject><subject>sandwich photothermal membranes</subject><subject>Sandwich structures</subject><subject>Seawater</subject><subject>solar desalination</subject><subject>Steam generation</subject><subject>Structural hierarchy</subject><subject>Thermal energy</subject><subject>Thermal management</subject><subject>Thermal utilization</subject><subject>Vaporization</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkctuEzEUhkcIREthyxJZYsMmwZeJZ7xEo9AipQIpsLZ8Oe648tjFnijNjkfgGXkSXKUEiQ2r48Xn7_xHf9O8JnhJMKbvyxTCkmKKMV517ElzTjhhC95T8fT0JviseVHKLcaM0LZ73pwxyrqeEX7e3G9VtHtvRvRlTHOaR8iTCugaJp1VBLT384iGFJ2PYNGVh6yyGb2pzKCyThENEEJB66h08PGmIjfjrx8_18554yGaA9qmoDLazqAmdAmxGmaf4svmmVOhwKvHedF8-7j-OlwtNp8vPw0fNgvTEsoWxIKGTimnFSetcMxwrZkwRDlhsdWWdD04yxgXhK2IdQDccu6obUG0xrKL5t3Re5fT9x2UWU6-mJq5Xpd2RVImRM9Wbccq-vYf9DbtcqzpJK1hcF3Qryq1PFImp1IyOHmX_aTyQRIsHzqRD53IUyf1w5tH7U5PYE_4nxIqII7A3gc4_Ecnt9ebzV_5b0s4m4Q</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Tian, Cheng</creator><creator>Liu, Jing</creator><creator>Ruan, Ruofan</creator><creator>Tian, Xinlong</creator><creator>Lai, Xiaoyong</creator><creator>Xing, Lei</creator><creator>Su, Yaqiong</creator><creator>Huang, Wei</creator><creator>Cao, Yang</creator><creator>Tu, Jinchun</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7274-5958</orcidid></search><sort><creationdate>20200601</creationdate><title>Sandwich Photothermal Membrane with Confined Hierarchical Carbon Cells Enabling High‐Efficiency Solar Steam Generation</title><author>Tian, Cheng ; Liu, Jing ; Ruan, Ruofan ; Tian, Xinlong ; Lai, Xiaoyong ; Xing, Lei ; Su, Yaqiong ; Huang, Wei ; Cao, Yang ; Tu, Jinchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4123-1debe7aafba6149f3c6bb39c1af9d0dbd178efd33691351dfee6d66f2d4e94cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon</topic><topic>energy confinement</topic><topic>Energy conversion efficiency</topic><topic>Evaporation</topic><topic>Evaporation rate</topic><topic>Evaporators</topic><topic>hierarchical carbon cells</topic><topic>Membranes</topic><topic>Nanotechnology</topic><topic>sandwich photothermal membranes</topic><topic>Sandwich structures</topic><topic>Seawater</topic><topic>solar desalination</topic><topic>Steam generation</topic><topic>Structural hierarchy</topic><topic>Thermal energy</topic><topic>Thermal management</topic><topic>Thermal utilization</topic><topic>Vaporization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Cheng</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Ruan, Ruofan</creatorcontrib><creatorcontrib>Tian, Xinlong</creatorcontrib><creatorcontrib>Lai, Xiaoyong</creatorcontrib><creatorcontrib>Xing, Lei</creatorcontrib><creatorcontrib>Su, Yaqiong</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Cao, Yang</creatorcontrib><creatorcontrib>Tu, Jinchun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Cheng</au><au>Liu, Jing</au><au>Ruan, Ruofan</au><au>Tian, Xinlong</au><au>Lai, Xiaoyong</au><au>Xing, Lei</au><au>Su, Yaqiong</au><au>Huang, Wei</au><au>Cao, Yang</au><au>Tu, Jinchun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sandwich Photothermal Membrane with Confined Hierarchical Carbon Cells Enabling High‐Efficiency Solar Steam Generation</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>16</volume><issue>23</issue><spage>e2000573</spage><epage>n/a</epage><pages>e2000573-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Solar‐driven vaporization is a sustainable solution to water and energy scarcity. However, most of the present evaporators are still suffering from inefficient utilization of converted thermal energy. Herein, a universal sandwich membrane strategy is demonstrated by confining the hierarchical porous carbon cells in two energy barriers to obtain a high‐efficiency evaporator with a rapid water evaporation rate of 1.87 kg m−2 h−1 under 1 sun illumination, which is among the highest performance for carbon‐based and wood‐based evaporators. The significantly enhanced evaporation rate is mainly attributed to the inherently optimized porous evaporation mode derived from the hierarchical hollow structures of pollen carbon cells, and the synergistically regulated water transporting and thermal management performance of the sandwich membrane. Moreover, the constructed sandwich membrane also exhibits excellent self‐regenerating performance in simulated seawater and high salinity water. The developed device can maintain an average evaporation rate of 4.3 L m−2 day−1 in a 25 day consecutive outdoor test.
A sandwich photothermal membrane is prepared by confining the hierarchical porous carbon cells in two energy barriers to achieve a rapid water evaporation rate of 1.87 kg m−2 h−1 under 1 sun illumination. The significantly enhanced evaporation rate is mainly attributed to the inherently optimized micropore evaporation mode, and the synergistically regulated water transporting and thermal management performance.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32378316</pmid><doi>10.1002/smll.202000573</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7274-5958</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2020-06, Vol.16 (23), p.e2000573-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2399835473 |
source | Wiley Online Library All Journals |
subjects | Carbon energy confinement Energy conversion efficiency Evaporation Evaporation rate Evaporators hierarchical carbon cells Membranes Nanotechnology sandwich photothermal membranes Sandwich structures Seawater solar desalination Steam generation Structural hierarchy Thermal energy Thermal management Thermal utilization Vaporization |
title | Sandwich Photothermal Membrane with Confined Hierarchical Carbon Cells Enabling High‐Efficiency Solar Steam Generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A38%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sandwich%20Photothermal%20Membrane%20with%20Confined%20Hierarchical%20Carbon%20Cells%20Enabling%20High%E2%80%90Efficiency%20Solar%20Steam%20Generation&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Tian,%20Cheng&rft.date=2020-06-01&rft.volume=16&rft.issue=23&rft.spage=e2000573&rft.epage=n/a&rft.pages=e2000573-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202000573&rft_dat=%3Cproquest_cross%3E2412013585%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412013585&rft_id=info:pmid/32378316&rfr_iscdi=true |