Cognitive disturbances in the cuprizone model of multiple sclerosis

Cognitive problems frequently accompany neurological manifestations of multiple sclerosis (MS). However, during screening of preclinical candidates, assessments of behaviour in mouse models of MS typically focus on locomotor activity. In the present study, we analysed cognitive behaviour of 9 to 10‐...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes, brain and behavior brain and behavior, 2021-01, Vol.20 (1), p.e12663-n/a
Hauptverfasser: Kopanitsa, Maksym V., Lehtimäki, Kimmo K., Forsman, Markku, Suhonen, Ari, Koponen, Juho, Piiponniemi, Tuukka O., Kärkkäinen, Anna‐Mari, Pavlidi, Pavlina, Shatillo, Artem, Sweeney, Patrick J., Merenlender‐Wagner, Avia, Kaye, Joel, Orbach, Aric, Nurmi, Antti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e12663
container_title Genes, brain and behavior
container_volume 20
creator Kopanitsa, Maksym V.
Lehtimäki, Kimmo K.
Forsman, Markku
Suhonen, Ari
Koponen, Juho
Piiponniemi, Tuukka O.
Kärkkäinen, Anna‐Mari
Pavlidi, Pavlina
Shatillo, Artem
Sweeney, Patrick J.
Merenlender‐Wagner, Avia
Kaye, Joel
Orbach, Aric
Nurmi, Antti
description Cognitive problems frequently accompany neurological manifestations of multiple sclerosis (MS). However, during screening of preclinical candidates, assessments of behaviour in mouse models of MS typically focus on locomotor activity. In the present study, we analysed cognitive behaviour of 9 to 10‐week‐old female C57Bl/6J mice orally administered with the toxin cuprizone that induces demyelination, a characteristic feature of MS. Animals received 400 mg/kg cuprizone daily for 2 or 4 weeks, and their performance was compared with that of vehicle‐treated mice. Cuprizone‐treated animals showed multiple deficits in short touchscreen‐based operant tasks: they responded more slowly to visual stimuli, rewards and made more errors in a simple rule‐learning task. In contextual/cued fear conditioning experiments, cuprizone‐treated mice showed significantly lower levels of contextual freezing than vehicle‐treated mice. Diffusion tensor imaging showed treatment‐dependent changes in fractional anisotropy as well as in axial and mean diffusivities in different white matter areas. Lower values of fractional anisotropy and axial diffusivity in cuprizone‐treated mice indicated developing demyelination and/or axonal damage. Several diffusion tensor imaging measurements correlated with learning parameters. Our results show that translational touchscreen operant tests and fear conditioning paradigms can reliably detect cognitive consequences of cuprizone treatment. The suggested experimental approach enables screening novel MS drug candidates in longitudinal experiments for their ability to improve pathological changes in brain structure and reverse cognitive deficits. Correlation of fractional anisotropy data with behavioural performance in cuprizone‐treated and control mice.
doi_str_mv 10.1111/gbb.12663
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2399238755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479425742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3883-7dadee4a653bad3fd5d919e8f8a97cf6541cefbd039e74cef843d25836aed5cb3</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EoqUw8AIoEgsMaWM7TpyRRlCQKrGAxGY59qW4SuISJ6Dy9BhSOiBxy_3Dp193H0LnOJpiP7NVUUwxSRJ6gMY4iXCIOX053OeYj9CJc-sowinl-BiNKKEpYYSPUZ7bVWM68w6BNq7r20I2ClxgmqB7hUD1m9Z82gaC2mqoAlsGdV91ZlNB4FQFrXXGnaKjUlYOznZ7gp7vbp_y-3D5uHjIb5ahopzTMNVSA8QyYbSQmpaa6QxnwEsus1SVCYuxgrLQEc0gjX3kMdWEcZpI0EwVdIKuht5Na996cJ2ojVNQVbIB2ztBaJYRylPGPHr5B13bvm38dYLEaRYTlsbEU9cDpfwfroVS-G9r2W4FjsS3WeHNih-znr3YNfZFDXpP_qr0wGwAPkwF2_-bxGI-Hyq_APUygsk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479425742</pqid></control><display><type>article</type><title>Cognitive disturbances in the cuprizone model of multiple sclerosis</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Kopanitsa, Maksym V. ; Lehtimäki, Kimmo K. ; Forsman, Markku ; Suhonen, Ari ; Koponen, Juho ; Piiponniemi, Tuukka O. ; Kärkkäinen, Anna‐Mari ; Pavlidi, Pavlina ; Shatillo, Artem ; Sweeney, Patrick J. ; Merenlender‐Wagner, Avia ; Kaye, Joel ; Orbach, Aric ; Nurmi, Antti</creator><creatorcontrib>Kopanitsa, Maksym V. ; Lehtimäki, Kimmo K. ; Forsman, Markku ; Suhonen, Ari ; Koponen, Juho ; Piiponniemi, Tuukka O. ; Kärkkäinen, Anna‐Mari ; Pavlidi, Pavlina ; Shatillo, Artem ; Sweeney, Patrick J. ; Merenlender‐Wagner, Avia ; Kaye, Joel ; Orbach, Aric ; Nurmi, Antti</creatorcontrib><description>Cognitive problems frequently accompany neurological manifestations of multiple sclerosis (MS). However, during screening of preclinical candidates, assessments of behaviour in mouse models of MS typically focus on locomotor activity. In the present study, we analysed cognitive behaviour of 9 to 10‐week‐old female C57Bl/6J mice orally administered with the toxin cuprizone that induces demyelination, a characteristic feature of MS. Animals received 400 mg/kg cuprizone daily for 2 or 4 weeks, and their performance was compared with that of vehicle‐treated mice. Cuprizone‐treated animals showed multiple deficits in short touchscreen‐based operant tasks: they responded more slowly to visual stimuli, rewards and made more errors in a simple rule‐learning task. In contextual/cued fear conditioning experiments, cuprizone‐treated mice showed significantly lower levels of contextual freezing than vehicle‐treated mice. Diffusion tensor imaging showed treatment‐dependent changes in fractional anisotropy as well as in axial and mean diffusivities in different white matter areas. Lower values of fractional anisotropy and axial diffusivity in cuprizone‐treated mice indicated developing demyelination and/or axonal damage. Several diffusion tensor imaging measurements correlated with learning parameters. Our results show that translational touchscreen operant tests and fear conditioning paradigms can reliably detect cognitive consequences of cuprizone treatment. The suggested experimental approach enables screening novel MS drug candidates in longitudinal experiments for their ability to improve pathological changes in brain structure and reverse cognitive deficits. Correlation of fractional anisotropy data with behavioural performance in cuprizone‐treated and control mice.</description><identifier>ISSN: 1601-1848</identifier><identifier>EISSN: 1601-183X</identifier><identifier>DOI: 10.1111/gbb.12663</identifier><identifier>PMID: 32372528</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animal models ; Animals ; Anisotropy ; Cognition ; Cognition &amp; reasoning ; Cognitive ability ; Conditioning, Operant ; Corpus Callosum - diagnostic imaging ; Cuprizone ; Cuprizone - toxicity ; Demyelination ; diffusion tensor imaging ; Drug development ; Fear conditioning ; Female ; Interactive computer systems ; Learning ; Locomotor activity ; Magnetic resonance imaging ; Mice ; Mice, Inbred C57BL ; MRI ; Multiple sclerosis ; Multiple Sclerosis - etiology ; Multiple Sclerosis - physiopathology ; Neuroimaging ; Operant conditioning ; Oral administration ; Substantia alba ; Tonic immobility ; touchscreen ; Visual Perception ; Visual stimuli</subject><ispartof>Genes, brain and behavior, 2021-01, Vol.20 (1), p.e12663-n/a</ispartof><rights>2020 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley &amp; Sons Ltd.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3883-7dadee4a653bad3fd5d919e8f8a97cf6541cefbd039e74cef843d25836aed5cb3</citedby><cites>FETCH-LOGICAL-c3883-7dadee4a653bad3fd5d919e8f8a97cf6541cefbd039e74cef843d25836aed5cb3</cites><orcidid>0000-0001-8694-9644</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgbb.12663$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgbb.12663$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32372528$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kopanitsa, Maksym V.</creatorcontrib><creatorcontrib>Lehtimäki, Kimmo K.</creatorcontrib><creatorcontrib>Forsman, Markku</creatorcontrib><creatorcontrib>Suhonen, Ari</creatorcontrib><creatorcontrib>Koponen, Juho</creatorcontrib><creatorcontrib>Piiponniemi, Tuukka O.</creatorcontrib><creatorcontrib>Kärkkäinen, Anna‐Mari</creatorcontrib><creatorcontrib>Pavlidi, Pavlina</creatorcontrib><creatorcontrib>Shatillo, Artem</creatorcontrib><creatorcontrib>Sweeney, Patrick J.</creatorcontrib><creatorcontrib>Merenlender‐Wagner, Avia</creatorcontrib><creatorcontrib>Kaye, Joel</creatorcontrib><creatorcontrib>Orbach, Aric</creatorcontrib><creatorcontrib>Nurmi, Antti</creatorcontrib><title>Cognitive disturbances in the cuprizone model of multiple sclerosis</title><title>Genes, brain and behavior</title><addtitle>Genes Brain Behav</addtitle><description>Cognitive problems frequently accompany neurological manifestations of multiple sclerosis (MS). However, during screening of preclinical candidates, assessments of behaviour in mouse models of MS typically focus on locomotor activity. In the present study, we analysed cognitive behaviour of 9 to 10‐week‐old female C57Bl/6J mice orally administered with the toxin cuprizone that induces demyelination, a characteristic feature of MS. Animals received 400 mg/kg cuprizone daily for 2 or 4 weeks, and their performance was compared with that of vehicle‐treated mice. Cuprizone‐treated animals showed multiple deficits in short touchscreen‐based operant tasks: they responded more slowly to visual stimuli, rewards and made more errors in a simple rule‐learning task. In contextual/cued fear conditioning experiments, cuprizone‐treated mice showed significantly lower levels of contextual freezing than vehicle‐treated mice. Diffusion tensor imaging showed treatment‐dependent changes in fractional anisotropy as well as in axial and mean diffusivities in different white matter areas. Lower values of fractional anisotropy and axial diffusivity in cuprizone‐treated mice indicated developing demyelination and/or axonal damage. Several diffusion tensor imaging measurements correlated with learning parameters. Our results show that translational touchscreen operant tests and fear conditioning paradigms can reliably detect cognitive consequences of cuprizone treatment. The suggested experimental approach enables screening novel MS drug candidates in longitudinal experiments for their ability to improve pathological changes in brain structure and reverse cognitive deficits. Correlation of fractional anisotropy data with behavioural performance in cuprizone‐treated and control mice.</description><subject>Animal models</subject><subject>Animals</subject><subject>Anisotropy</subject><subject>Cognition</subject><subject>Cognition &amp; reasoning</subject><subject>Cognitive ability</subject><subject>Conditioning, Operant</subject><subject>Corpus Callosum - diagnostic imaging</subject><subject>Cuprizone</subject><subject>Cuprizone - toxicity</subject><subject>Demyelination</subject><subject>diffusion tensor imaging</subject><subject>Drug development</subject><subject>Fear conditioning</subject><subject>Female</subject><subject>Interactive computer systems</subject><subject>Learning</subject><subject>Locomotor activity</subject><subject>Magnetic resonance imaging</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>MRI</subject><subject>Multiple sclerosis</subject><subject>Multiple Sclerosis - etiology</subject><subject>Multiple Sclerosis - physiopathology</subject><subject>Neuroimaging</subject><subject>Operant conditioning</subject><subject>Oral administration</subject><subject>Substantia alba</subject><subject>Tonic immobility</subject><subject>touchscreen</subject><subject>Visual Perception</subject><subject>Visual stimuli</subject><issn>1601-1848</issn><issn>1601-183X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kLFOwzAQhi0EoqUw8AIoEgsMaWM7TpyRRlCQKrGAxGY59qW4SuISJ6Dy9BhSOiBxy_3Dp193H0LnOJpiP7NVUUwxSRJ6gMY4iXCIOX053OeYj9CJc-sowinl-BiNKKEpYYSPUZ7bVWM68w6BNq7r20I2ClxgmqB7hUD1m9Z82gaC2mqoAlsGdV91ZlNB4FQFrXXGnaKjUlYOznZ7gp7vbp_y-3D5uHjIb5ahopzTMNVSA8QyYbSQmpaa6QxnwEsus1SVCYuxgrLQEc0gjX3kMdWEcZpI0EwVdIKuht5Na996cJ2ojVNQVbIB2ztBaJYRylPGPHr5B13bvm38dYLEaRYTlsbEU9cDpfwfroVS-G9r2W4FjsS3WeHNih-znr3YNfZFDXpP_qr0wGwAPkwF2_-bxGI-Hyq_APUygsk</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Kopanitsa, Maksym V.</creator><creator>Lehtimäki, Kimmo K.</creator><creator>Forsman, Markku</creator><creator>Suhonen, Ari</creator><creator>Koponen, Juho</creator><creator>Piiponniemi, Tuukka O.</creator><creator>Kärkkäinen, Anna‐Mari</creator><creator>Pavlidi, Pavlina</creator><creator>Shatillo, Artem</creator><creator>Sweeney, Patrick J.</creator><creator>Merenlender‐Wagner, Avia</creator><creator>Kaye, Joel</creator><creator>Orbach, Aric</creator><creator>Nurmi, Antti</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8694-9644</orcidid></search><sort><creationdate>202101</creationdate><title>Cognitive disturbances in the cuprizone model of multiple sclerosis</title><author>Kopanitsa, Maksym V. ; Lehtimäki, Kimmo K. ; Forsman, Markku ; Suhonen, Ari ; Koponen, Juho ; Piiponniemi, Tuukka O. ; Kärkkäinen, Anna‐Mari ; Pavlidi, Pavlina ; Shatillo, Artem ; Sweeney, Patrick J. ; Merenlender‐Wagner, Avia ; Kaye, Joel ; Orbach, Aric ; Nurmi, Antti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3883-7dadee4a653bad3fd5d919e8f8a97cf6541cefbd039e74cef843d25836aed5cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Anisotropy</topic><topic>Cognition</topic><topic>Cognition &amp; reasoning</topic><topic>Cognitive ability</topic><topic>Conditioning, Operant</topic><topic>Corpus Callosum - diagnostic imaging</topic><topic>Cuprizone</topic><topic>Cuprizone - toxicity</topic><topic>Demyelination</topic><topic>diffusion tensor imaging</topic><topic>Drug development</topic><topic>Fear conditioning</topic><topic>Female</topic><topic>Interactive computer systems</topic><topic>Learning</topic><topic>Locomotor activity</topic><topic>Magnetic resonance imaging</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>MRI</topic><topic>Multiple sclerosis</topic><topic>Multiple Sclerosis - etiology</topic><topic>Multiple Sclerosis - physiopathology</topic><topic>Neuroimaging</topic><topic>Operant conditioning</topic><topic>Oral administration</topic><topic>Substantia alba</topic><topic>Tonic immobility</topic><topic>touchscreen</topic><topic>Visual Perception</topic><topic>Visual stimuli</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kopanitsa, Maksym V.</creatorcontrib><creatorcontrib>Lehtimäki, Kimmo K.</creatorcontrib><creatorcontrib>Forsman, Markku</creatorcontrib><creatorcontrib>Suhonen, Ari</creatorcontrib><creatorcontrib>Koponen, Juho</creatorcontrib><creatorcontrib>Piiponniemi, Tuukka O.</creatorcontrib><creatorcontrib>Kärkkäinen, Anna‐Mari</creatorcontrib><creatorcontrib>Pavlidi, Pavlina</creatorcontrib><creatorcontrib>Shatillo, Artem</creatorcontrib><creatorcontrib>Sweeney, Patrick J.</creatorcontrib><creatorcontrib>Merenlender‐Wagner, Avia</creatorcontrib><creatorcontrib>Kaye, Joel</creatorcontrib><creatorcontrib>Orbach, Aric</creatorcontrib><creatorcontrib>Nurmi, Antti</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Genes, brain and behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kopanitsa, Maksym V.</au><au>Lehtimäki, Kimmo K.</au><au>Forsman, Markku</au><au>Suhonen, Ari</au><au>Koponen, Juho</au><au>Piiponniemi, Tuukka O.</au><au>Kärkkäinen, Anna‐Mari</au><au>Pavlidi, Pavlina</au><au>Shatillo, Artem</au><au>Sweeney, Patrick J.</au><au>Merenlender‐Wagner, Avia</au><au>Kaye, Joel</au><au>Orbach, Aric</au><au>Nurmi, Antti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cognitive disturbances in the cuprizone model of multiple sclerosis</atitle><jtitle>Genes, brain and behavior</jtitle><addtitle>Genes Brain Behav</addtitle><date>2021-01</date><risdate>2021</risdate><volume>20</volume><issue>1</issue><spage>e12663</spage><epage>n/a</epage><pages>e12663-n/a</pages><issn>1601-1848</issn><eissn>1601-183X</eissn><abstract>Cognitive problems frequently accompany neurological manifestations of multiple sclerosis (MS). However, during screening of preclinical candidates, assessments of behaviour in mouse models of MS typically focus on locomotor activity. In the present study, we analysed cognitive behaviour of 9 to 10‐week‐old female C57Bl/6J mice orally administered with the toxin cuprizone that induces demyelination, a characteristic feature of MS. Animals received 400 mg/kg cuprizone daily for 2 or 4 weeks, and their performance was compared with that of vehicle‐treated mice. Cuprizone‐treated animals showed multiple deficits in short touchscreen‐based operant tasks: they responded more slowly to visual stimuli, rewards and made more errors in a simple rule‐learning task. In contextual/cued fear conditioning experiments, cuprizone‐treated mice showed significantly lower levels of contextual freezing than vehicle‐treated mice. Diffusion tensor imaging showed treatment‐dependent changes in fractional anisotropy as well as in axial and mean diffusivities in different white matter areas. Lower values of fractional anisotropy and axial diffusivity in cuprizone‐treated mice indicated developing demyelination and/or axonal damage. Several diffusion tensor imaging measurements correlated with learning parameters. Our results show that translational touchscreen operant tests and fear conditioning paradigms can reliably detect cognitive consequences of cuprizone treatment. The suggested experimental approach enables screening novel MS drug candidates in longitudinal experiments for their ability to improve pathological changes in brain structure and reverse cognitive deficits. Correlation of fractional anisotropy data with behavioural performance in cuprizone‐treated and control mice.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>32372528</pmid><doi>10.1111/gbb.12663</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8694-9644</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1601-1848
ispartof Genes, brain and behavior, 2021-01, Vol.20 (1), p.e12663-n/a
issn 1601-1848
1601-183X
language eng
recordid cdi_proquest_miscellaneous_2399238755
source MEDLINE; Wiley Online Library Open Access; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Animal models
Animals
Anisotropy
Cognition
Cognition & reasoning
Cognitive ability
Conditioning, Operant
Corpus Callosum - diagnostic imaging
Cuprizone
Cuprizone - toxicity
Demyelination
diffusion tensor imaging
Drug development
Fear conditioning
Female
Interactive computer systems
Learning
Locomotor activity
Magnetic resonance imaging
Mice
Mice, Inbred C57BL
MRI
Multiple sclerosis
Multiple Sclerosis - etiology
Multiple Sclerosis - physiopathology
Neuroimaging
Operant conditioning
Oral administration
Substantia alba
Tonic immobility
touchscreen
Visual Perception
Visual stimuli
title Cognitive disturbances in the cuprizone model of multiple sclerosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T04%3A02%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cognitive%20disturbances%20in%20the%20cuprizone%20model%20of%20multiple%20sclerosis&rft.jtitle=Genes,%20brain%20and%20behavior&rft.au=Kopanitsa,%20Maksym%20V.&rft.date=2021-01&rft.volume=20&rft.issue=1&rft.spage=e12663&rft.epage=n/a&rft.pages=e12663-n/a&rft.issn=1601-1848&rft.eissn=1601-183X&rft_id=info:doi/10.1111/gbb.12663&rft_dat=%3Cproquest_cross%3E2479425742%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479425742&rft_id=info:pmid/32372528&rfr_iscdi=true