Two‐Plateau Li‐Se Chemistry for High Volumetric Capacity Se Cathodes
For Li‐Se batteries, ether‐ and carbonate‐based electrolytes are commonly used. However, because of the “shuttle effect” of the highly dissoluble long‐chain lithium polyselenides (LPSes, Li2Sen, 4≤n≤8) in the ether electrolytes and the sluggish one‐step solid‐solid conversion between Se and Li2Se in...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2020-08, Vol.59 (33), p.13908-13914 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13914 |
---|---|
container_issue | 33 |
container_start_page | 13908 |
container_title | Angewandte Chemie International Edition |
container_volume | 59 |
creator | Qi, Xiaoqun Yang, Ying Jin, Qiang Yang, Fengyi Xie, Yong Sang, Pengfei Liu, Kun Zhao, Wenbin Xu, Xiaobin Fu, Yongzhu Zhou, Jian Qie, Long Huang, Yunhui |
description | For Li‐Se batteries, ether‐ and carbonate‐based electrolytes are commonly used. However, because of the “shuttle effect” of the highly dissoluble long‐chain lithium polyselenides (LPSes, Li2Sen, 4≤n≤8) in the ether electrolytes and the sluggish one‐step solid‐solid conversion between Se and Li2Se in the carbonate electrolytes, a large amount of porous carbon (>40 wt % in the electrode) is always needed for the Se cathodes, which seriously counteracts the advantage of Se electrodes in terms of volumetric capacity. Herein an acetonitrile‐based electrolyte is introduced for the Li‐Se system, and a two‐plateau conversion mechanism is proposed. This new Li‐Se chemistry not only avoids the shuttle effect but also facilitates the conversion between Se and Li2Se, enabling an efficient Se cathode with high Se utilization (97 %) and enhanced Coulombic efficiency. Moreover, with such a designed electrolyte, a highly compact Se electrode (2.35 gSe cm−3) with a record‐breaking Se content (80 wt %) and high Se loading (8 mg cm−2) is demonstrated to have a superhigh volumetric energy density of up to 2502 Wh L−1, surpassing that of LiCoO2.
The discovery of a new low‐barrier two‐step solid reaction pathway for Li‐Se chemistry is reported. The finding has enabled a highly compact Se electrode (2.35 gSe cm−3) with a record‐breaking Se content (80 wt %), and high Se loading (8 mg cm−2), as well as a superhigh volumetric energy density of up to 2502 Wh L−1, surpassing that of LiCoO2. |
doi_str_mv | 10.1002/anie.202004424 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2399238510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430057875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4534-ce8f051f7e738d702779de6296086766c815fe453767547094cd3ba1b866b333</originalsourceid><addsrcrecordid>eNqF0E9LwzAYBvAgCs7p1XPBi5fO_E96HGW6wVDB4TVkaeoyumUmLdKbH8HP6CcxY6LgxVMS-D3hfR8ALhEcIQjxjd46O8IQQ0gppkdggBhGORGCHKc7JSQXkqFTcBbjOnkpIR-A6eLNf75_PDa6tbrL5i49nmxWruzGxTb0We1DNnUvq-zZN93GtsGZrNQ7bVzbZ3up25WvbDwHJ7Vuor34PodgcTtZlNN8_nA3K8fz3FBGaG6srCFDtbCCyEpALERRWY4LDiUXnBuJWG0TFVwwKmBBTUWWGi0l50tCyBBcH77dBf_a2diqNKexTaO31ndRYVIUmKQ9YaJXf-jad2GbhlOYEgiZkIIlNTooE3yMwdZqF9xGh14hqPa9qn2v6qfXFCgOgTfX2P4frcb3s8lv9guQ_Xsk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430057875</pqid></control><display><type>article</type><title>Two‐Plateau Li‐Se Chemistry for High Volumetric Capacity Se Cathodes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Qi, Xiaoqun ; Yang, Ying ; Jin, Qiang ; Yang, Fengyi ; Xie, Yong ; Sang, Pengfei ; Liu, Kun ; Zhao, Wenbin ; Xu, Xiaobin ; Fu, Yongzhu ; Zhou, Jian ; Qie, Long ; Huang, Yunhui</creator><creatorcontrib>Qi, Xiaoqun ; Yang, Ying ; Jin, Qiang ; Yang, Fengyi ; Xie, Yong ; Sang, Pengfei ; Liu, Kun ; Zhao, Wenbin ; Xu, Xiaobin ; Fu, Yongzhu ; Zhou, Jian ; Qie, Long ; Huang, Yunhui</creatorcontrib><description>For Li‐Se batteries, ether‐ and carbonate‐based electrolytes are commonly used. However, because of the “shuttle effect” of the highly dissoluble long‐chain lithium polyselenides (LPSes, Li2Sen, 4≤n≤8) in the ether electrolytes and the sluggish one‐step solid‐solid conversion between Se and Li2Se in the carbonate electrolytes, a large amount of porous carbon (>40 wt % in the electrode) is always needed for the Se cathodes, which seriously counteracts the advantage of Se electrodes in terms of volumetric capacity. Herein an acetonitrile‐based electrolyte is introduced for the Li‐Se system, and a two‐plateau conversion mechanism is proposed. This new Li‐Se chemistry not only avoids the shuttle effect but also facilitates the conversion between Se and Li2Se, enabling an efficient Se cathode with high Se utilization (97 %) and enhanced Coulombic efficiency. Moreover, with such a designed electrolyte, a highly compact Se electrode (2.35 gSe cm−3) with a record‐breaking Se content (80 wt %) and high Se loading (8 mg cm−2) is demonstrated to have a superhigh volumetric energy density of up to 2502 Wh L−1, surpassing that of LiCoO2.
The discovery of a new low‐barrier two‐step solid reaction pathway for Li‐Se chemistry is reported. The finding has enabled a highly compact Se electrode (2.35 gSe cm−3) with a record‐breaking Se content (80 wt %), and high Se loading (8 mg cm−2), as well as a superhigh volumetric energy density of up to 2502 Wh L−1, surpassing that of LiCoO2.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202004424</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Acetonitrile ; Batteries ; Cathodes ; Conversion ; electrochemistry ; Electrodes ; Electrolytes ; Flux density ; Lithium ; reaction mechanisms ; selenium</subject><ispartof>Angewandte Chemie International Edition, 2020-08, Vol.59 (33), p.13908-13914</ispartof><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4534-ce8f051f7e738d702779de6296086766c815fe453767547094cd3ba1b866b333</citedby><cites>FETCH-LOGICAL-c4534-ce8f051f7e738d702779de6296086766c815fe453767547094cd3ba1b866b333</cites><orcidid>0000-0003-1687-1938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202004424$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202004424$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Qi, Xiaoqun</creatorcontrib><creatorcontrib>Yang, Ying</creatorcontrib><creatorcontrib>Jin, Qiang</creatorcontrib><creatorcontrib>Yang, Fengyi</creatorcontrib><creatorcontrib>Xie, Yong</creatorcontrib><creatorcontrib>Sang, Pengfei</creatorcontrib><creatorcontrib>Liu, Kun</creatorcontrib><creatorcontrib>Zhao, Wenbin</creatorcontrib><creatorcontrib>Xu, Xiaobin</creatorcontrib><creatorcontrib>Fu, Yongzhu</creatorcontrib><creatorcontrib>Zhou, Jian</creatorcontrib><creatorcontrib>Qie, Long</creatorcontrib><creatorcontrib>Huang, Yunhui</creatorcontrib><title>Two‐Plateau Li‐Se Chemistry for High Volumetric Capacity Se Cathodes</title><title>Angewandte Chemie International Edition</title><description>For Li‐Se batteries, ether‐ and carbonate‐based electrolytes are commonly used. However, because of the “shuttle effect” of the highly dissoluble long‐chain lithium polyselenides (LPSes, Li2Sen, 4≤n≤8) in the ether electrolytes and the sluggish one‐step solid‐solid conversion between Se and Li2Se in the carbonate electrolytes, a large amount of porous carbon (>40 wt % in the electrode) is always needed for the Se cathodes, which seriously counteracts the advantage of Se electrodes in terms of volumetric capacity. Herein an acetonitrile‐based electrolyte is introduced for the Li‐Se system, and a two‐plateau conversion mechanism is proposed. This new Li‐Se chemistry not only avoids the shuttle effect but also facilitates the conversion between Se and Li2Se, enabling an efficient Se cathode with high Se utilization (97 %) and enhanced Coulombic efficiency. Moreover, with such a designed electrolyte, a highly compact Se electrode (2.35 gSe cm−3) with a record‐breaking Se content (80 wt %) and high Se loading (8 mg cm−2) is demonstrated to have a superhigh volumetric energy density of up to 2502 Wh L−1, surpassing that of LiCoO2.
The discovery of a new low‐barrier two‐step solid reaction pathway for Li‐Se chemistry is reported. The finding has enabled a highly compact Se electrode (2.35 gSe cm−3) with a record‐breaking Se content (80 wt %), and high Se loading (8 mg cm−2), as well as a superhigh volumetric energy density of up to 2502 Wh L−1, surpassing that of LiCoO2.</description><subject>Acetonitrile</subject><subject>Batteries</subject><subject>Cathodes</subject><subject>Conversion</subject><subject>electrochemistry</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Flux density</subject><subject>Lithium</subject><subject>reaction mechanisms</subject><subject>selenium</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0E9LwzAYBvAgCs7p1XPBi5fO_E96HGW6wVDB4TVkaeoyumUmLdKbH8HP6CcxY6LgxVMS-D3hfR8ALhEcIQjxjd46O8IQQ0gppkdggBhGORGCHKc7JSQXkqFTcBbjOnkpIR-A6eLNf75_PDa6tbrL5i49nmxWruzGxTb0We1DNnUvq-zZN93GtsGZrNQ7bVzbZ3up25WvbDwHJ7Vuor34PodgcTtZlNN8_nA3K8fz3FBGaG6srCFDtbCCyEpALERRWY4LDiUXnBuJWG0TFVwwKmBBTUWWGi0l50tCyBBcH77dBf_a2diqNKexTaO31ndRYVIUmKQ9YaJXf-jad2GbhlOYEgiZkIIlNTooE3yMwdZqF9xGh14hqPa9qn2v6qfXFCgOgTfX2P4frcb3s8lv9guQ_Xsk</recordid><startdate>20200810</startdate><enddate>20200810</enddate><creator>Qi, Xiaoqun</creator><creator>Yang, Ying</creator><creator>Jin, Qiang</creator><creator>Yang, Fengyi</creator><creator>Xie, Yong</creator><creator>Sang, Pengfei</creator><creator>Liu, Kun</creator><creator>Zhao, Wenbin</creator><creator>Xu, Xiaobin</creator><creator>Fu, Yongzhu</creator><creator>Zhou, Jian</creator><creator>Qie, Long</creator><creator>Huang, Yunhui</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1687-1938</orcidid></search><sort><creationdate>20200810</creationdate><title>Two‐Plateau Li‐Se Chemistry for High Volumetric Capacity Se Cathodes</title><author>Qi, Xiaoqun ; Yang, Ying ; Jin, Qiang ; Yang, Fengyi ; Xie, Yong ; Sang, Pengfei ; Liu, Kun ; Zhao, Wenbin ; Xu, Xiaobin ; Fu, Yongzhu ; Zhou, Jian ; Qie, Long ; Huang, Yunhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4534-ce8f051f7e738d702779de6296086766c815fe453767547094cd3ba1b866b333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetonitrile</topic><topic>Batteries</topic><topic>Cathodes</topic><topic>Conversion</topic><topic>electrochemistry</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Flux density</topic><topic>Lithium</topic><topic>reaction mechanisms</topic><topic>selenium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Xiaoqun</creatorcontrib><creatorcontrib>Yang, Ying</creatorcontrib><creatorcontrib>Jin, Qiang</creatorcontrib><creatorcontrib>Yang, Fengyi</creatorcontrib><creatorcontrib>Xie, Yong</creatorcontrib><creatorcontrib>Sang, Pengfei</creatorcontrib><creatorcontrib>Liu, Kun</creatorcontrib><creatorcontrib>Zhao, Wenbin</creatorcontrib><creatorcontrib>Xu, Xiaobin</creatorcontrib><creatorcontrib>Fu, Yongzhu</creatorcontrib><creatorcontrib>Zhou, Jian</creatorcontrib><creatorcontrib>Qie, Long</creatorcontrib><creatorcontrib>Huang, Yunhui</creatorcontrib><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Xiaoqun</au><au>Yang, Ying</au><au>Jin, Qiang</au><au>Yang, Fengyi</au><au>Xie, Yong</au><au>Sang, Pengfei</au><au>Liu, Kun</au><au>Zhao, Wenbin</au><au>Xu, Xiaobin</au><au>Fu, Yongzhu</au><au>Zhou, Jian</au><au>Qie, Long</au><au>Huang, Yunhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two‐Plateau Li‐Se Chemistry for High Volumetric Capacity Se Cathodes</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2020-08-10</date><risdate>2020</risdate><volume>59</volume><issue>33</issue><spage>13908</spage><epage>13914</epage><pages>13908-13914</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>For Li‐Se batteries, ether‐ and carbonate‐based electrolytes are commonly used. However, because of the “shuttle effect” of the highly dissoluble long‐chain lithium polyselenides (LPSes, Li2Sen, 4≤n≤8) in the ether electrolytes and the sluggish one‐step solid‐solid conversion between Se and Li2Se in the carbonate electrolytes, a large amount of porous carbon (>40 wt % in the electrode) is always needed for the Se cathodes, which seriously counteracts the advantage of Se electrodes in terms of volumetric capacity. Herein an acetonitrile‐based electrolyte is introduced for the Li‐Se system, and a two‐plateau conversion mechanism is proposed. This new Li‐Se chemistry not only avoids the shuttle effect but also facilitates the conversion between Se and Li2Se, enabling an efficient Se cathode with high Se utilization (97 %) and enhanced Coulombic efficiency. Moreover, with such a designed electrolyte, a highly compact Se electrode (2.35 gSe cm−3) with a record‐breaking Se content (80 wt %) and high Se loading (8 mg cm−2) is demonstrated to have a superhigh volumetric energy density of up to 2502 Wh L−1, surpassing that of LiCoO2.
The discovery of a new low‐barrier two‐step solid reaction pathway for Li‐Se chemistry is reported. The finding has enabled a highly compact Se electrode (2.35 gSe cm−3) with a record‐breaking Se content (80 wt %), and high Se loading (8 mg cm−2), as well as a superhigh volumetric energy density of up to 2502 Wh L−1, surpassing that of LiCoO2.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202004424</doi><tpages>7</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-1687-1938</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2020-08, Vol.59 (33), p.13908-13914 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2399238510 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Acetonitrile Batteries Cathodes Conversion electrochemistry Electrodes Electrolytes Flux density Lithium reaction mechanisms selenium |
title | Two‐Plateau Li‐Se Chemistry for High Volumetric Capacity Se Cathodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A37%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%E2%80%90Plateau%20Li%E2%80%90Se%20Chemistry%20for%20High%20Volumetric%20Capacity%20Se%20Cathodes&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Qi,%20Xiaoqun&rft.date=2020-08-10&rft.volume=59&rft.issue=33&rft.spage=13908&rft.epage=13914&rft.pages=13908-13914&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202004424&rft_dat=%3Cproquest_cross%3E2430057875%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430057875&rft_id=info:pmid/&rfr_iscdi=true |