Two‐Plateau Li‐Se Chemistry for High Volumetric Capacity Se Cathodes

For Li‐Se batteries, ether‐ and carbonate‐based electrolytes are commonly used. However, because of the “shuttle effect” of the highly dissoluble long‐chain lithium polyselenides (LPSes, Li2Sen, 4≤n≤8) in the ether electrolytes and the sluggish one‐step solid‐solid conversion between Se and Li2Se in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2020-08, Vol.59 (33), p.13908-13914
Hauptverfasser: Qi, Xiaoqun, Yang, Ying, Jin, Qiang, Yang, Fengyi, Xie, Yong, Sang, Pengfei, Liu, Kun, Zhao, Wenbin, Xu, Xiaobin, Fu, Yongzhu, Zhou, Jian, Qie, Long, Huang, Yunhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13914
container_issue 33
container_start_page 13908
container_title Angewandte Chemie International Edition
container_volume 59
creator Qi, Xiaoqun
Yang, Ying
Jin, Qiang
Yang, Fengyi
Xie, Yong
Sang, Pengfei
Liu, Kun
Zhao, Wenbin
Xu, Xiaobin
Fu, Yongzhu
Zhou, Jian
Qie, Long
Huang, Yunhui
description For Li‐Se batteries, ether‐ and carbonate‐based electrolytes are commonly used. However, because of the “shuttle effect” of the highly dissoluble long‐chain lithium polyselenides (LPSes, Li2Sen, 4≤n≤8) in the ether electrolytes and the sluggish one‐step solid‐solid conversion between Se and Li2Se in the carbonate electrolytes, a large amount of porous carbon (>40 wt % in the electrode) is always needed for the Se cathodes, which seriously counteracts the advantage of Se electrodes in terms of volumetric capacity. Herein an acetonitrile‐based electrolyte is introduced for the Li‐Se system, and a two‐plateau conversion mechanism is proposed. This new Li‐Se chemistry not only avoids the shuttle effect but also facilitates the conversion between Se and Li2Se, enabling an efficient Se cathode with high Se utilization (97 %) and enhanced Coulombic efficiency. Moreover, with such a designed electrolyte, a highly compact Se electrode (2.35 gSe cm−3) with a record‐breaking Se content (80 wt %) and high Se loading (8 mg cm−2) is demonstrated to have a superhigh volumetric energy density of up to 2502 Wh L−1, surpassing that of LiCoO2. The discovery of a new low‐barrier two‐step solid reaction pathway for Li‐Se chemistry is reported. The finding has enabled a highly compact Se electrode (2.35 gSe cm−3) with a record‐breaking Se content (80 wt %), and high Se loading (8 mg cm−2), as well as a superhigh volumetric energy density of up to 2502 Wh L−1, surpassing that of LiCoO2.
doi_str_mv 10.1002/anie.202004424
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2399238510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430057875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4534-ce8f051f7e738d702779de6296086766c815fe453767547094cd3ba1b866b333</originalsourceid><addsrcrecordid>eNqF0E9LwzAYBvAgCs7p1XPBi5fO_E96HGW6wVDB4TVkaeoyumUmLdKbH8HP6CcxY6LgxVMS-D3hfR8ALhEcIQjxjd46O8IQQ0gppkdggBhGORGCHKc7JSQXkqFTcBbjOnkpIR-A6eLNf75_PDa6tbrL5i49nmxWruzGxTb0We1DNnUvq-zZN93GtsGZrNQ7bVzbZ3up25WvbDwHJ7Vuor34PodgcTtZlNN8_nA3K8fz3FBGaG6srCFDtbCCyEpALERRWY4LDiUXnBuJWG0TFVwwKmBBTUWWGi0l50tCyBBcH77dBf_a2diqNKexTaO31ndRYVIUmKQ9YaJXf-jad2GbhlOYEgiZkIIlNTooE3yMwdZqF9xGh14hqPa9qn2v6qfXFCgOgTfX2P4frcb3s8lv9guQ_Xsk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430057875</pqid></control><display><type>article</type><title>Two‐Plateau Li‐Se Chemistry for High Volumetric Capacity Se Cathodes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Qi, Xiaoqun ; Yang, Ying ; Jin, Qiang ; Yang, Fengyi ; Xie, Yong ; Sang, Pengfei ; Liu, Kun ; Zhao, Wenbin ; Xu, Xiaobin ; Fu, Yongzhu ; Zhou, Jian ; Qie, Long ; Huang, Yunhui</creator><creatorcontrib>Qi, Xiaoqun ; Yang, Ying ; Jin, Qiang ; Yang, Fengyi ; Xie, Yong ; Sang, Pengfei ; Liu, Kun ; Zhao, Wenbin ; Xu, Xiaobin ; Fu, Yongzhu ; Zhou, Jian ; Qie, Long ; Huang, Yunhui</creatorcontrib><description>For Li‐Se batteries, ether‐ and carbonate‐based electrolytes are commonly used. However, because of the “shuttle effect” of the highly dissoluble long‐chain lithium polyselenides (LPSes, Li2Sen, 4≤n≤8) in the ether electrolytes and the sluggish one‐step solid‐solid conversion between Se and Li2Se in the carbonate electrolytes, a large amount of porous carbon (&gt;40 wt % in the electrode) is always needed for the Se cathodes, which seriously counteracts the advantage of Se electrodes in terms of volumetric capacity. Herein an acetonitrile‐based electrolyte is introduced for the Li‐Se system, and a two‐plateau conversion mechanism is proposed. This new Li‐Se chemistry not only avoids the shuttle effect but also facilitates the conversion between Se and Li2Se, enabling an efficient Se cathode with high Se utilization (97 %) and enhanced Coulombic efficiency. Moreover, with such a designed electrolyte, a highly compact Se electrode (2.35 gSe cm−3) with a record‐breaking Se content (80 wt %) and high Se loading (8 mg cm−2) is demonstrated to have a superhigh volumetric energy density of up to 2502 Wh L−1, surpassing that of LiCoO2. The discovery of a new low‐barrier two‐step solid reaction pathway for Li‐Se chemistry is reported. The finding has enabled a highly compact Se electrode (2.35 gSe cm−3) with a record‐breaking Se content (80 wt %), and high Se loading (8 mg cm−2), as well as a superhigh volumetric energy density of up to 2502 Wh L−1, surpassing that of LiCoO2.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202004424</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Acetonitrile ; Batteries ; Cathodes ; Conversion ; electrochemistry ; Electrodes ; Electrolytes ; Flux density ; Lithium ; reaction mechanisms ; selenium</subject><ispartof>Angewandte Chemie International Edition, 2020-08, Vol.59 (33), p.13908-13914</ispartof><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4534-ce8f051f7e738d702779de6296086766c815fe453767547094cd3ba1b866b333</citedby><cites>FETCH-LOGICAL-c4534-ce8f051f7e738d702779de6296086766c815fe453767547094cd3ba1b866b333</cites><orcidid>0000-0003-1687-1938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202004424$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202004424$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Qi, Xiaoqun</creatorcontrib><creatorcontrib>Yang, Ying</creatorcontrib><creatorcontrib>Jin, Qiang</creatorcontrib><creatorcontrib>Yang, Fengyi</creatorcontrib><creatorcontrib>Xie, Yong</creatorcontrib><creatorcontrib>Sang, Pengfei</creatorcontrib><creatorcontrib>Liu, Kun</creatorcontrib><creatorcontrib>Zhao, Wenbin</creatorcontrib><creatorcontrib>Xu, Xiaobin</creatorcontrib><creatorcontrib>Fu, Yongzhu</creatorcontrib><creatorcontrib>Zhou, Jian</creatorcontrib><creatorcontrib>Qie, Long</creatorcontrib><creatorcontrib>Huang, Yunhui</creatorcontrib><title>Two‐Plateau Li‐Se Chemistry for High Volumetric Capacity Se Cathodes</title><title>Angewandte Chemie International Edition</title><description>For Li‐Se batteries, ether‐ and carbonate‐based electrolytes are commonly used. However, because of the “shuttle effect” of the highly dissoluble long‐chain lithium polyselenides (LPSes, Li2Sen, 4≤n≤8) in the ether electrolytes and the sluggish one‐step solid‐solid conversion between Se and Li2Se in the carbonate electrolytes, a large amount of porous carbon (&gt;40 wt % in the electrode) is always needed for the Se cathodes, which seriously counteracts the advantage of Se electrodes in terms of volumetric capacity. Herein an acetonitrile‐based electrolyte is introduced for the Li‐Se system, and a two‐plateau conversion mechanism is proposed. This new Li‐Se chemistry not only avoids the shuttle effect but also facilitates the conversion between Se and Li2Se, enabling an efficient Se cathode with high Se utilization (97 %) and enhanced Coulombic efficiency. Moreover, with such a designed electrolyte, a highly compact Se electrode (2.35 gSe cm−3) with a record‐breaking Se content (80 wt %) and high Se loading (8 mg cm−2) is demonstrated to have a superhigh volumetric energy density of up to 2502 Wh L−1, surpassing that of LiCoO2. The discovery of a new low‐barrier two‐step solid reaction pathway for Li‐Se chemistry is reported. The finding has enabled a highly compact Se electrode (2.35 gSe cm−3) with a record‐breaking Se content (80 wt %), and high Se loading (8 mg cm−2), as well as a superhigh volumetric energy density of up to 2502 Wh L−1, surpassing that of LiCoO2.</description><subject>Acetonitrile</subject><subject>Batteries</subject><subject>Cathodes</subject><subject>Conversion</subject><subject>electrochemistry</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Flux density</subject><subject>Lithium</subject><subject>reaction mechanisms</subject><subject>selenium</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0E9LwzAYBvAgCs7p1XPBi5fO_E96HGW6wVDB4TVkaeoyumUmLdKbH8HP6CcxY6LgxVMS-D3hfR8ALhEcIQjxjd46O8IQQ0gppkdggBhGORGCHKc7JSQXkqFTcBbjOnkpIR-A6eLNf75_PDa6tbrL5i49nmxWruzGxTb0We1DNnUvq-zZN93GtsGZrNQ7bVzbZ3up25WvbDwHJ7Vuor34PodgcTtZlNN8_nA3K8fz3FBGaG6srCFDtbCCyEpALERRWY4LDiUXnBuJWG0TFVwwKmBBTUWWGi0l50tCyBBcH77dBf_a2diqNKexTaO31ndRYVIUmKQ9YaJXf-jad2GbhlOYEgiZkIIlNTooE3yMwdZqF9xGh14hqPa9qn2v6qfXFCgOgTfX2P4frcb3s8lv9guQ_Xsk</recordid><startdate>20200810</startdate><enddate>20200810</enddate><creator>Qi, Xiaoqun</creator><creator>Yang, Ying</creator><creator>Jin, Qiang</creator><creator>Yang, Fengyi</creator><creator>Xie, Yong</creator><creator>Sang, Pengfei</creator><creator>Liu, Kun</creator><creator>Zhao, Wenbin</creator><creator>Xu, Xiaobin</creator><creator>Fu, Yongzhu</creator><creator>Zhou, Jian</creator><creator>Qie, Long</creator><creator>Huang, Yunhui</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1687-1938</orcidid></search><sort><creationdate>20200810</creationdate><title>Two‐Plateau Li‐Se Chemistry for High Volumetric Capacity Se Cathodes</title><author>Qi, Xiaoqun ; Yang, Ying ; Jin, Qiang ; Yang, Fengyi ; Xie, Yong ; Sang, Pengfei ; Liu, Kun ; Zhao, Wenbin ; Xu, Xiaobin ; Fu, Yongzhu ; Zhou, Jian ; Qie, Long ; Huang, Yunhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4534-ce8f051f7e738d702779de6296086766c815fe453767547094cd3ba1b866b333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetonitrile</topic><topic>Batteries</topic><topic>Cathodes</topic><topic>Conversion</topic><topic>electrochemistry</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Flux density</topic><topic>Lithium</topic><topic>reaction mechanisms</topic><topic>selenium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Xiaoqun</creatorcontrib><creatorcontrib>Yang, Ying</creatorcontrib><creatorcontrib>Jin, Qiang</creatorcontrib><creatorcontrib>Yang, Fengyi</creatorcontrib><creatorcontrib>Xie, Yong</creatorcontrib><creatorcontrib>Sang, Pengfei</creatorcontrib><creatorcontrib>Liu, Kun</creatorcontrib><creatorcontrib>Zhao, Wenbin</creatorcontrib><creatorcontrib>Xu, Xiaobin</creatorcontrib><creatorcontrib>Fu, Yongzhu</creatorcontrib><creatorcontrib>Zhou, Jian</creatorcontrib><creatorcontrib>Qie, Long</creatorcontrib><creatorcontrib>Huang, Yunhui</creatorcontrib><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Xiaoqun</au><au>Yang, Ying</au><au>Jin, Qiang</au><au>Yang, Fengyi</au><au>Xie, Yong</au><au>Sang, Pengfei</au><au>Liu, Kun</au><au>Zhao, Wenbin</au><au>Xu, Xiaobin</au><au>Fu, Yongzhu</au><au>Zhou, Jian</au><au>Qie, Long</au><au>Huang, Yunhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two‐Plateau Li‐Se Chemistry for High Volumetric Capacity Se Cathodes</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2020-08-10</date><risdate>2020</risdate><volume>59</volume><issue>33</issue><spage>13908</spage><epage>13914</epage><pages>13908-13914</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>For Li‐Se batteries, ether‐ and carbonate‐based electrolytes are commonly used. However, because of the “shuttle effect” of the highly dissoluble long‐chain lithium polyselenides (LPSes, Li2Sen, 4≤n≤8) in the ether electrolytes and the sluggish one‐step solid‐solid conversion between Se and Li2Se in the carbonate electrolytes, a large amount of porous carbon (&gt;40 wt % in the electrode) is always needed for the Se cathodes, which seriously counteracts the advantage of Se electrodes in terms of volumetric capacity. Herein an acetonitrile‐based electrolyte is introduced for the Li‐Se system, and a two‐plateau conversion mechanism is proposed. This new Li‐Se chemistry not only avoids the shuttle effect but also facilitates the conversion between Se and Li2Se, enabling an efficient Se cathode with high Se utilization (97 %) and enhanced Coulombic efficiency. Moreover, with such a designed electrolyte, a highly compact Se electrode (2.35 gSe cm−3) with a record‐breaking Se content (80 wt %) and high Se loading (8 mg cm−2) is demonstrated to have a superhigh volumetric energy density of up to 2502 Wh L−1, surpassing that of LiCoO2. The discovery of a new low‐barrier two‐step solid reaction pathway for Li‐Se chemistry is reported. The finding has enabled a highly compact Se electrode (2.35 gSe cm−3) with a record‐breaking Se content (80 wt %), and high Se loading (8 mg cm−2), as well as a superhigh volumetric energy density of up to 2502 Wh L−1, surpassing that of LiCoO2.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202004424</doi><tpages>7</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-1687-1938</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2020-08, Vol.59 (33), p.13908-13914
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2399238510
source Wiley Online Library Journals Frontfile Complete
subjects Acetonitrile
Batteries
Cathodes
Conversion
electrochemistry
Electrodes
Electrolytes
Flux density
Lithium
reaction mechanisms
selenium
title Two‐Plateau Li‐Se Chemistry for High Volumetric Capacity Se Cathodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A37%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%E2%80%90Plateau%20Li%E2%80%90Se%20Chemistry%20for%20High%20Volumetric%20Capacity%20Se%20Cathodes&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Qi,%20Xiaoqun&rft.date=2020-08-10&rft.volume=59&rft.issue=33&rft.spage=13908&rft.epage=13914&rft.pages=13908-13914&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202004424&rft_dat=%3Cproquest_cross%3E2430057875%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430057875&rft_id=info:pmid/&rfr_iscdi=true