Nitrate Respiration Promotes Polymyxin B Resistance in Pseudomonas aeruginosa
Polymyxin B (PMB) is known to require reactive oxygen species (ROS) for its bactericidal activity, but the mechanism of PMB resistance in various strains has been poorly understood. This study examined the role of nitrate respiration (NR) of some strains in the PMB resistance. We observed that the m...
Gespeichert in:
Veröffentlicht in: | Antioxidants & redox signaling 2021-02, Vol.34 (6), p.442-451 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 451 |
---|---|
container_issue | 6 |
container_start_page | 442 |
container_title | Antioxidants & redox signaling |
container_volume | 34 |
creator | Kim, Bi-O Jang, Hye-Jeong Chung, In-Young Bae, Hee-Won Kim, Eun Sook Cho, You-Hee |
description | Polymyxin B (PMB) is known to require reactive oxygen species (ROS) for its bactericidal activity, but the mechanism of PMB resistance in various
strains has been poorly understood. This study examined the role of nitrate respiration (NR) of some
strains in the PMB resistance.
We observed that the minimum inhibitory concentration (MIC) value of PMB against
PA14 was eightfold reduced (from 2.0 to 0.25 μg/mL) by agitation, but not against
PAO1 (from 2.0 to 1.0 μg/mL). Transcriptomic and phenotypic analyses using both strains and their NR mutants revealed that the higher NR in PAO1 than in PA14 accounted for the higher MIC value (
, PMB resistance) of PAO1, which was sufficient to compromise the antibacterial activity of PMB in
infections. We also confirmed the contribution of the NR to the PMB resistance is independent of the major catalase (KatA), suggesting that the NR might affect the ROS generation rather than the ROS disintegration. Furthermore, this PMB resistance was relatively common among clinical
isolates and correlated with higher NR in those strains.
These results suggest
strains could display intrinsic resistance to antibiotics in clinical settings and that NR is a crucial factor in the intrinsic antibiotic resistance, and also provide an insight into another key target for successful antibiotic treatment of
infections.
34, 442-451. |
doi_str_mv | 10.1089/ars.2019.7924 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2399237967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480399516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-bf7616ce8f3c132568304137614cc234c21f82321ea06aca91a1e5d59353d65d3</originalsourceid><addsrcrecordid>eNpd0M9LwzAUB_AgipvTo1cpePHSmZc0aXPU4S-YOkTPIUtTyWibmrTg_ntTNj14ysvjw-O9L0LngOeAC3GtfJgTDGKeC5IdoCkwlqd5DvxwrAlNccGzCToJYYMxJgD4GE0ooTlmDKbo-cX2XvUmeTOhs7Gyrk1W3jWuNyFZuXrbbL9tm9yOwIZetdok8b8KZiijalVIlPHDp21dUKfoqFJ1MGf7d4Y-7u_eF4_p8vXhaXGzTDUl0KfrKufAtSkqqoESxguKM6CxmWlNaKYJVAWJ1CjMlVYCFBhWMkEZLTkr6Qxd7eZ23n0NJvSysUGbulatcUOQhAoRTxQ8j_TyH924wbdxO0myAkfIgEeV7pT2LgRvKtl52yi_lYDlmLOMOcsxZznmHP3Ffuqwbkz5p3-DpT-lD3e4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480399516</pqid></control><display><type>article</type><title>Nitrate Respiration Promotes Polymyxin B Resistance in Pseudomonas aeruginosa</title><source>Alma/SFX Local Collection</source><creator>Kim, Bi-O ; Jang, Hye-Jeong ; Chung, In-Young ; Bae, Hee-Won ; Kim, Eun Sook ; Cho, You-Hee</creator><creatorcontrib>Kim, Bi-O ; Jang, Hye-Jeong ; Chung, In-Young ; Bae, Hee-Won ; Kim, Eun Sook ; Cho, You-Hee</creatorcontrib><description>Polymyxin B (PMB) is known to require reactive oxygen species (ROS) for its bactericidal activity, but the mechanism of PMB resistance in various
strains has been poorly understood. This study examined the role of nitrate respiration (NR) of some
strains in the PMB resistance.
We observed that the minimum inhibitory concentration (MIC) value of PMB against
PA14 was eightfold reduced (from 2.0 to 0.25 μg/mL) by agitation, but not against
PAO1 (from 2.0 to 1.0 μg/mL). Transcriptomic and phenotypic analyses using both strains and their NR mutants revealed that the higher NR in PAO1 than in PA14 accounted for the higher MIC value (
, PMB resistance) of PAO1, which was sufficient to compromise the antibacterial activity of PMB in
infections. We also confirmed the contribution of the NR to the PMB resistance is independent of the major catalase (KatA), suggesting that the NR might affect the ROS generation rather than the ROS disintegration. Furthermore, this PMB resistance was relatively common among clinical
isolates and correlated with higher NR in those strains.
These results suggest
strains could display intrinsic resistance to antibiotics in clinical settings and that NR is a crucial factor in the intrinsic antibiotic resistance, and also provide an insight into another key target for successful antibiotic treatment of
infections.
34, 442-451.</description><identifier>ISSN: 1523-0864</identifier><identifier>EISSN: 1557-7716</identifier><identifier>DOI: 10.1089/ars.2019.7924</identifier><identifier>PMID: 32370551</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Antibacterial activity ; Antibiotic resistance ; Antibiotics ; Bactericidal activity ; Catalase ; Disintegration ; Infections ; Minimum inhibitory concentration ; Polymyxin B ; Pseudomonas aeruginosa ; Reactive oxygen species ; Respiration</subject><ispartof>Antioxidants & redox signaling, 2021-02, Vol.34 (6), p.442-451</ispartof><rights>Copyright Mary Ann Liebert, Inc. Feb 20, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-bf7616ce8f3c132568304137614cc234c21f82321ea06aca91a1e5d59353d65d3</citedby><cites>FETCH-LOGICAL-c321t-bf7616ce8f3c132568304137614cc234c21f82321ea06aca91a1e5d59353d65d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32370551$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Bi-O</creatorcontrib><creatorcontrib>Jang, Hye-Jeong</creatorcontrib><creatorcontrib>Chung, In-Young</creatorcontrib><creatorcontrib>Bae, Hee-Won</creatorcontrib><creatorcontrib>Kim, Eun Sook</creatorcontrib><creatorcontrib>Cho, You-Hee</creatorcontrib><title>Nitrate Respiration Promotes Polymyxin B Resistance in Pseudomonas aeruginosa</title><title>Antioxidants & redox signaling</title><addtitle>Antioxid Redox Signal</addtitle><description>Polymyxin B (PMB) is known to require reactive oxygen species (ROS) for its bactericidal activity, but the mechanism of PMB resistance in various
strains has been poorly understood. This study examined the role of nitrate respiration (NR) of some
strains in the PMB resistance.
We observed that the minimum inhibitory concentration (MIC) value of PMB against
PA14 was eightfold reduced (from 2.0 to 0.25 μg/mL) by agitation, but not against
PAO1 (from 2.0 to 1.0 μg/mL). Transcriptomic and phenotypic analyses using both strains and their NR mutants revealed that the higher NR in PAO1 than in PA14 accounted for the higher MIC value (
, PMB resistance) of PAO1, which was sufficient to compromise the antibacterial activity of PMB in
infections. We also confirmed the contribution of the NR to the PMB resistance is independent of the major catalase (KatA), suggesting that the NR might affect the ROS generation rather than the ROS disintegration. Furthermore, this PMB resistance was relatively common among clinical
isolates and correlated with higher NR in those strains.
These results suggest
strains could display intrinsic resistance to antibiotics in clinical settings and that NR is a crucial factor in the intrinsic antibiotic resistance, and also provide an insight into another key target for successful antibiotic treatment of
infections.
34, 442-451.</description><subject>Antibacterial activity</subject><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>Bactericidal activity</subject><subject>Catalase</subject><subject>Disintegration</subject><subject>Infections</subject><subject>Minimum inhibitory concentration</subject><subject>Polymyxin B</subject><subject>Pseudomonas aeruginosa</subject><subject>Reactive oxygen species</subject><subject>Respiration</subject><issn>1523-0864</issn><issn>1557-7716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0M9LwzAUB_AgipvTo1cpePHSmZc0aXPU4S-YOkTPIUtTyWibmrTg_ntTNj14ysvjw-O9L0LngOeAC3GtfJgTDGKeC5IdoCkwlqd5DvxwrAlNccGzCToJYYMxJgD4GE0ooTlmDKbo-cX2XvUmeTOhs7Gyrk1W3jWuNyFZuXrbbL9tm9yOwIZetdok8b8KZiijalVIlPHDp21dUKfoqFJ1MGf7d4Y-7u_eF4_p8vXhaXGzTDUl0KfrKufAtSkqqoESxguKM6CxmWlNaKYJVAWJ1CjMlVYCFBhWMkEZLTkr6Qxd7eZ23n0NJvSysUGbulatcUOQhAoRTxQ8j_TyH924wbdxO0myAkfIgEeV7pT2LgRvKtl52yi_lYDlmLOMOcsxZznmHP3Ffuqwbkz5p3-DpT-lD3e4</recordid><startdate>20210220</startdate><enddate>20210220</enddate><creator>Kim, Bi-O</creator><creator>Jang, Hye-Jeong</creator><creator>Chung, In-Young</creator><creator>Bae, Hee-Won</creator><creator>Kim, Eun Sook</creator><creator>Cho, You-Hee</creator><general>Mary Ann Liebert, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20210220</creationdate><title>Nitrate Respiration Promotes Polymyxin B Resistance in Pseudomonas aeruginosa</title><author>Kim, Bi-O ; Jang, Hye-Jeong ; Chung, In-Young ; Bae, Hee-Won ; Kim, Eun Sook ; Cho, You-Hee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-bf7616ce8f3c132568304137614cc234c21f82321ea06aca91a1e5d59353d65d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antibacterial activity</topic><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>Bactericidal activity</topic><topic>Catalase</topic><topic>Disintegration</topic><topic>Infections</topic><topic>Minimum inhibitory concentration</topic><topic>Polymyxin B</topic><topic>Pseudomonas aeruginosa</topic><topic>Reactive oxygen species</topic><topic>Respiration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Bi-O</creatorcontrib><creatorcontrib>Jang, Hye-Jeong</creatorcontrib><creatorcontrib>Chung, In-Young</creatorcontrib><creatorcontrib>Bae, Hee-Won</creatorcontrib><creatorcontrib>Kim, Eun Sook</creatorcontrib><creatorcontrib>Cho, You-Hee</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Antioxidants & redox signaling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Bi-O</au><au>Jang, Hye-Jeong</au><au>Chung, In-Young</au><au>Bae, Hee-Won</au><au>Kim, Eun Sook</au><au>Cho, You-Hee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrate Respiration Promotes Polymyxin B Resistance in Pseudomonas aeruginosa</atitle><jtitle>Antioxidants & redox signaling</jtitle><addtitle>Antioxid Redox Signal</addtitle><date>2021-02-20</date><risdate>2021</risdate><volume>34</volume><issue>6</issue><spage>442</spage><epage>451</epage><pages>442-451</pages><issn>1523-0864</issn><eissn>1557-7716</eissn><abstract>Polymyxin B (PMB) is known to require reactive oxygen species (ROS) for its bactericidal activity, but the mechanism of PMB resistance in various
strains has been poorly understood. This study examined the role of nitrate respiration (NR) of some
strains in the PMB resistance.
We observed that the minimum inhibitory concentration (MIC) value of PMB against
PA14 was eightfold reduced (from 2.0 to 0.25 μg/mL) by agitation, but not against
PAO1 (from 2.0 to 1.0 μg/mL). Transcriptomic and phenotypic analyses using both strains and their NR mutants revealed that the higher NR in PAO1 than in PA14 accounted for the higher MIC value (
, PMB resistance) of PAO1, which was sufficient to compromise the antibacterial activity of PMB in
infections. We also confirmed the contribution of the NR to the PMB resistance is independent of the major catalase (KatA), suggesting that the NR might affect the ROS generation rather than the ROS disintegration. Furthermore, this PMB resistance was relatively common among clinical
isolates and correlated with higher NR in those strains.
These results suggest
strains could display intrinsic resistance to antibiotics in clinical settings and that NR is a crucial factor in the intrinsic antibiotic resistance, and also provide an insight into another key target for successful antibiotic treatment of
infections.
34, 442-451.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>32370551</pmid><doi>10.1089/ars.2019.7924</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1523-0864 |
ispartof | Antioxidants & redox signaling, 2021-02, Vol.34 (6), p.442-451 |
issn | 1523-0864 1557-7716 |
language | eng |
recordid | cdi_proquest_miscellaneous_2399237967 |
source | Alma/SFX Local Collection |
subjects | Antibacterial activity Antibiotic resistance Antibiotics Bactericidal activity Catalase Disintegration Infections Minimum inhibitory concentration Polymyxin B Pseudomonas aeruginosa Reactive oxygen species Respiration |
title | Nitrate Respiration Promotes Polymyxin B Resistance in Pseudomonas aeruginosa |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A22%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrate%20Respiration%20Promotes%20Polymyxin%20B%20Resistance%20in%20Pseudomonas%20aeruginosa&rft.jtitle=Antioxidants%20&%20redox%20signaling&rft.au=Kim,%20Bi-O&rft.date=2021-02-20&rft.volume=34&rft.issue=6&rft.spage=442&rft.epage=451&rft.pages=442-451&rft.issn=1523-0864&rft.eissn=1557-7716&rft_id=info:doi/10.1089/ars.2019.7924&rft_dat=%3Cproquest_cross%3E2480399516%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480399516&rft_id=info:pmid/32370551&rfr_iscdi=true |