Nitrate Respiration Promotes Polymyxin B Resistance in Pseudomonas aeruginosa

Polymyxin B (PMB) is known to require reactive oxygen species (ROS) for its bactericidal activity, but the mechanism of PMB resistance in various strains has been poorly understood. This study examined the role of nitrate respiration (NR) of some strains in the PMB resistance. We observed that the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antioxidants & redox signaling 2021-02, Vol.34 (6), p.442-451
Hauptverfasser: Kim, Bi-O, Jang, Hye-Jeong, Chung, In-Young, Bae, Hee-Won, Kim, Eun Sook, Cho, You-Hee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 451
container_issue 6
container_start_page 442
container_title Antioxidants & redox signaling
container_volume 34
creator Kim, Bi-O
Jang, Hye-Jeong
Chung, In-Young
Bae, Hee-Won
Kim, Eun Sook
Cho, You-Hee
description Polymyxin B (PMB) is known to require reactive oxygen species (ROS) for its bactericidal activity, but the mechanism of PMB resistance in various strains has been poorly understood. This study examined the role of nitrate respiration (NR) of some strains in the PMB resistance. We observed that the minimum inhibitory concentration (MIC) value of PMB against PA14 was eightfold reduced (from 2.0 to 0.25 μg/mL) by agitation, but not against PAO1 (from 2.0 to 1.0 μg/mL). Transcriptomic and phenotypic analyses using both strains and their NR mutants revealed that the higher NR in PAO1 than in PA14 accounted for the higher MIC value ( , PMB resistance) of PAO1, which was sufficient to compromise the antibacterial activity of PMB in infections. We also confirmed the contribution of the NR to the PMB resistance is independent of the major catalase (KatA), suggesting that the NR might affect the ROS generation rather than the ROS disintegration. Furthermore, this PMB resistance was relatively common among clinical isolates and correlated with higher NR in those strains. These results suggest strains could display intrinsic resistance to antibiotics in clinical settings and that NR is a crucial factor in the intrinsic antibiotic resistance, and also provide an insight into another key target for successful antibiotic treatment of infections. 34, 442-451.
doi_str_mv 10.1089/ars.2019.7924
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2399237967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480399516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-bf7616ce8f3c132568304137614cc234c21f82321ea06aca91a1e5d59353d65d3</originalsourceid><addsrcrecordid>eNpd0M9LwzAUB_AgipvTo1cpePHSmZc0aXPU4S-YOkTPIUtTyWibmrTg_ntTNj14ysvjw-O9L0LngOeAC3GtfJgTDGKeC5IdoCkwlqd5DvxwrAlNccGzCToJYYMxJgD4GE0ooTlmDKbo-cX2XvUmeTOhs7Gyrk1W3jWuNyFZuXrbbL9tm9yOwIZetdok8b8KZiijalVIlPHDp21dUKfoqFJ1MGf7d4Y-7u_eF4_p8vXhaXGzTDUl0KfrKufAtSkqqoESxguKM6CxmWlNaKYJVAWJ1CjMlVYCFBhWMkEZLTkr6Qxd7eZ23n0NJvSysUGbulatcUOQhAoRTxQ8j_TyH924wbdxO0myAkfIgEeV7pT2LgRvKtl52yi_lYDlmLOMOcsxZznmHP3Ffuqwbkz5p3-DpT-lD3e4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480399516</pqid></control><display><type>article</type><title>Nitrate Respiration Promotes Polymyxin B Resistance in Pseudomonas aeruginosa</title><source>Alma/SFX Local Collection</source><creator>Kim, Bi-O ; Jang, Hye-Jeong ; Chung, In-Young ; Bae, Hee-Won ; Kim, Eun Sook ; Cho, You-Hee</creator><creatorcontrib>Kim, Bi-O ; Jang, Hye-Jeong ; Chung, In-Young ; Bae, Hee-Won ; Kim, Eun Sook ; Cho, You-Hee</creatorcontrib><description>Polymyxin B (PMB) is known to require reactive oxygen species (ROS) for its bactericidal activity, but the mechanism of PMB resistance in various strains has been poorly understood. This study examined the role of nitrate respiration (NR) of some strains in the PMB resistance. We observed that the minimum inhibitory concentration (MIC) value of PMB against PA14 was eightfold reduced (from 2.0 to 0.25 μg/mL) by agitation, but not against PAO1 (from 2.0 to 1.0 μg/mL). Transcriptomic and phenotypic analyses using both strains and their NR mutants revealed that the higher NR in PAO1 than in PA14 accounted for the higher MIC value ( , PMB resistance) of PAO1, which was sufficient to compromise the antibacterial activity of PMB in infections. We also confirmed the contribution of the NR to the PMB resistance is independent of the major catalase (KatA), suggesting that the NR might affect the ROS generation rather than the ROS disintegration. Furthermore, this PMB resistance was relatively common among clinical isolates and correlated with higher NR in those strains. These results suggest strains could display intrinsic resistance to antibiotics in clinical settings and that NR is a crucial factor in the intrinsic antibiotic resistance, and also provide an insight into another key target for successful antibiotic treatment of infections. 34, 442-451.</description><identifier>ISSN: 1523-0864</identifier><identifier>EISSN: 1557-7716</identifier><identifier>DOI: 10.1089/ars.2019.7924</identifier><identifier>PMID: 32370551</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Antibacterial activity ; Antibiotic resistance ; Antibiotics ; Bactericidal activity ; Catalase ; Disintegration ; Infections ; Minimum inhibitory concentration ; Polymyxin B ; Pseudomonas aeruginosa ; Reactive oxygen species ; Respiration</subject><ispartof>Antioxidants &amp; redox signaling, 2021-02, Vol.34 (6), p.442-451</ispartof><rights>Copyright Mary Ann Liebert, Inc. Feb 20, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-bf7616ce8f3c132568304137614cc234c21f82321ea06aca91a1e5d59353d65d3</citedby><cites>FETCH-LOGICAL-c321t-bf7616ce8f3c132568304137614cc234c21f82321ea06aca91a1e5d59353d65d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32370551$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Bi-O</creatorcontrib><creatorcontrib>Jang, Hye-Jeong</creatorcontrib><creatorcontrib>Chung, In-Young</creatorcontrib><creatorcontrib>Bae, Hee-Won</creatorcontrib><creatorcontrib>Kim, Eun Sook</creatorcontrib><creatorcontrib>Cho, You-Hee</creatorcontrib><title>Nitrate Respiration Promotes Polymyxin B Resistance in Pseudomonas aeruginosa</title><title>Antioxidants &amp; redox signaling</title><addtitle>Antioxid Redox Signal</addtitle><description>Polymyxin B (PMB) is known to require reactive oxygen species (ROS) for its bactericidal activity, but the mechanism of PMB resistance in various strains has been poorly understood. This study examined the role of nitrate respiration (NR) of some strains in the PMB resistance. We observed that the minimum inhibitory concentration (MIC) value of PMB against PA14 was eightfold reduced (from 2.0 to 0.25 μg/mL) by agitation, but not against PAO1 (from 2.0 to 1.0 μg/mL). Transcriptomic and phenotypic analyses using both strains and their NR mutants revealed that the higher NR in PAO1 than in PA14 accounted for the higher MIC value ( , PMB resistance) of PAO1, which was sufficient to compromise the antibacterial activity of PMB in infections. We also confirmed the contribution of the NR to the PMB resistance is independent of the major catalase (KatA), suggesting that the NR might affect the ROS generation rather than the ROS disintegration. Furthermore, this PMB resistance was relatively common among clinical isolates and correlated with higher NR in those strains. These results suggest strains could display intrinsic resistance to antibiotics in clinical settings and that NR is a crucial factor in the intrinsic antibiotic resistance, and also provide an insight into another key target for successful antibiotic treatment of infections. 34, 442-451.</description><subject>Antibacterial activity</subject><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>Bactericidal activity</subject><subject>Catalase</subject><subject>Disintegration</subject><subject>Infections</subject><subject>Minimum inhibitory concentration</subject><subject>Polymyxin B</subject><subject>Pseudomonas aeruginosa</subject><subject>Reactive oxygen species</subject><subject>Respiration</subject><issn>1523-0864</issn><issn>1557-7716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0M9LwzAUB_AgipvTo1cpePHSmZc0aXPU4S-YOkTPIUtTyWibmrTg_ntTNj14ysvjw-O9L0LngOeAC3GtfJgTDGKeC5IdoCkwlqd5DvxwrAlNccGzCToJYYMxJgD4GE0ooTlmDKbo-cX2XvUmeTOhs7Gyrk1W3jWuNyFZuXrbbL9tm9yOwIZetdok8b8KZiijalVIlPHDp21dUKfoqFJ1MGf7d4Y-7u_eF4_p8vXhaXGzTDUl0KfrKufAtSkqqoESxguKM6CxmWlNaKYJVAWJ1CjMlVYCFBhWMkEZLTkr6Qxd7eZ23n0NJvSysUGbulatcUOQhAoRTxQ8j_TyH924wbdxO0myAkfIgEeV7pT2LgRvKtl52yi_lYDlmLOMOcsxZznmHP3Ffuqwbkz5p3-DpT-lD3e4</recordid><startdate>20210220</startdate><enddate>20210220</enddate><creator>Kim, Bi-O</creator><creator>Jang, Hye-Jeong</creator><creator>Chung, In-Young</creator><creator>Bae, Hee-Won</creator><creator>Kim, Eun Sook</creator><creator>Cho, You-Hee</creator><general>Mary Ann Liebert, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20210220</creationdate><title>Nitrate Respiration Promotes Polymyxin B Resistance in Pseudomonas aeruginosa</title><author>Kim, Bi-O ; Jang, Hye-Jeong ; Chung, In-Young ; Bae, Hee-Won ; Kim, Eun Sook ; Cho, You-Hee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-bf7616ce8f3c132568304137614cc234c21f82321ea06aca91a1e5d59353d65d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antibacterial activity</topic><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>Bactericidal activity</topic><topic>Catalase</topic><topic>Disintegration</topic><topic>Infections</topic><topic>Minimum inhibitory concentration</topic><topic>Polymyxin B</topic><topic>Pseudomonas aeruginosa</topic><topic>Reactive oxygen species</topic><topic>Respiration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Bi-O</creatorcontrib><creatorcontrib>Jang, Hye-Jeong</creatorcontrib><creatorcontrib>Chung, In-Young</creatorcontrib><creatorcontrib>Bae, Hee-Won</creatorcontrib><creatorcontrib>Kim, Eun Sook</creatorcontrib><creatorcontrib>Cho, You-Hee</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Antioxidants &amp; redox signaling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Bi-O</au><au>Jang, Hye-Jeong</au><au>Chung, In-Young</au><au>Bae, Hee-Won</au><au>Kim, Eun Sook</au><au>Cho, You-Hee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrate Respiration Promotes Polymyxin B Resistance in Pseudomonas aeruginosa</atitle><jtitle>Antioxidants &amp; redox signaling</jtitle><addtitle>Antioxid Redox Signal</addtitle><date>2021-02-20</date><risdate>2021</risdate><volume>34</volume><issue>6</issue><spage>442</spage><epage>451</epage><pages>442-451</pages><issn>1523-0864</issn><eissn>1557-7716</eissn><abstract>Polymyxin B (PMB) is known to require reactive oxygen species (ROS) for its bactericidal activity, but the mechanism of PMB resistance in various strains has been poorly understood. This study examined the role of nitrate respiration (NR) of some strains in the PMB resistance. We observed that the minimum inhibitory concentration (MIC) value of PMB against PA14 was eightfold reduced (from 2.0 to 0.25 μg/mL) by agitation, but not against PAO1 (from 2.0 to 1.0 μg/mL). Transcriptomic and phenotypic analyses using both strains and their NR mutants revealed that the higher NR in PAO1 than in PA14 accounted for the higher MIC value ( , PMB resistance) of PAO1, which was sufficient to compromise the antibacterial activity of PMB in infections. We also confirmed the contribution of the NR to the PMB resistance is independent of the major catalase (KatA), suggesting that the NR might affect the ROS generation rather than the ROS disintegration. Furthermore, this PMB resistance was relatively common among clinical isolates and correlated with higher NR in those strains. These results suggest strains could display intrinsic resistance to antibiotics in clinical settings and that NR is a crucial factor in the intrinsic antibiotic resistance, and also provide an insight into another key target for successful antibiotic treatment of infections. 34, 442-451.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>32370551</pmid><doi>10.1089/ars.2019.7924</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1523-0864
ispartof Antioxidants & redox signaling, 2021-02, Vol.34 (6), p.442-451
issn 1523-0864
1557-7716
language eng
recordid cdi_proquest_miscellaneous_2399237967
source Alma/SFX Local Collection
subjects Antibacterial activity
Antibiotic resistance
Antibiotics
Bactericidal activity
Catalase
Disintegration
Infections
Minimum inhibitory concentration
Polymyxin B
Pseudomonas aeruginosa
Reactive oxygen species
Respiration
title Nitrate Respiration Promotes Polymyxin B Resistance in Pseudomonas aeruginosa
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A22%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrate%20Respiration%20Promotes%20Polymyxin%20B%20Resistance%20in%20Pseudomonas%20aeruginosa&rft.jtitle=Antioxidants%20&%20redox%20signaling&rft.au=Kim,%20Bi-O&rft.date=2021-02-20&rft.volume=34&rft.issue=6&rft.spage=442&rft.epage=451&rft.pages=442-451&rft.issn=1523-0864&rft.eissn=1557-7716&rft_id=info:doi/10.1089/ars.2019.7924&rft_dat=%3Cproquest_cross%3E2480399516%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480399516&rft_id=info:pmid/32370551&rfr_iscdi=true