Radiomics nomogram for preoperative differentiation of lung tuberculoma from adenocarcinoma in solitary pulmonary solid nodule

•Radiomics nomogram was used to preoperatively differentiate the TBG and LAC in patients with SPSN.•Deep learning-based VOI segmentation and quantitative 3D radiomics features were extracted and analyzed.•Radiomics nomogram achieved superior performance than either the radiomics signature or the cli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of radiology 2020-07, Vol.128, p.109022-109022, Article 109022
Hauptverfasser: Feng, Bao, Chen, Xiangmeng, Chen, Yehang, Liu, Kunfeng, Li, Kunwei, Liu, Xueguo, Yao, Nan, Li, Zhi, Li, Ronggang, Zhang, Chaotong, Ji, Jianbo, Long, Wansheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 109022
container_issue
container_start_page 109022
container_title European journal of radiology
container_volume 128
creator Feng, Bao
Chen, Xiangmeng
Chen, Yehang
Liu, Kunfeng
Li, Kunwei
Liu, Xueguo
Yao, Nan
Li, Zhi
Li, Ronggang
Zhang, Chaotong
Ji, Jianbo
Long, Wansheng
description •Radiomics nomogram was used to preoperatively differentiate the TBG and LAC in patients with SPSN.•Deep learning-based VOI segmentation and quantitative 3D radiomics features were extracted and analyzed.•Radiomics nomogram achieved superior performance than either the radiomics signature or the clinical model alone. To investigate the preoperative differential diagnostic performance of a radiomics nomogram in tuberculous granuloma (TBG) and lung adenocarcinoma (LAC) appearing as solitary pulmonary solid nodules (SPSNs). We retrospectively recruited 426 patients with SPSNs from two centers and assigned them to training (n = 123), internal validation (n = 121), and external validation cohorts (n = 182). A model of deep learning (DL) was built for tumor segmentation from routine computed tomography (CT) images and extraction of 3D radiomics features. We used the least absolute shrinkage and selection operator (LASSO) logistic regression to build a radiomics signature. A clinical model was developed with clinical factors, including age, gender, and CT-based subjective findings (eg, lesion size, lesion location, lesion margin, lobulated sharp, and spiculation sign). We constructed individualized radiomics nomograms incorporating the radiomics signature and clinical factors to validate the diagnostic ability. Three factors – radiomics signature, age, and spiculation sign – were found to be independent predictors and were used to build the radiomics nomogram, which showed better diagnostic accuracy than any single model (all net reclassification improvement p 
doi_str_mv 10.1016/j.ejrad.2020.109022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2399237611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0720048X20302114</els_id><sourcerecordid>2399237611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-7ba61861163e133f51d26840e32d14b107aded2b4718f81da9d1de70857169f43</originalsourceid><addsrcrecordid>eNp9kMFuFSEUhonR2NvqE5gYlm7myoG5w8zChWmqNmli0tikO8LAoeFmgBFmmrjps8t4q0tXwJ__8MFHyDtge2DQfTzu8Zi13XPGt2RgnL8gO-glb6Tk8iXZMclZw9r-_oycl3JkjB3agb8mZ4ILCdC3O_J0q61PwZtCYwrpIetAXcp0zphmzHrxj0itdw4zxsXXc4o0OTqt8YEu64jZrFMKmrqcAtUWYzI6Gx-3zEda0uQXnX_ReZ1Cittui2yl2XXCN-SV01PBt8_rBbn7cvXj8ltz8_3r9eXnm8aIw7A0ctQd9B1AJxCEcAewvOtbhoJbaEdgspItH1sJvevB6sGCRcn6g4RucK24IB9O9845_VyxLCr4YnCadMS0FsXFMFQnlVCr4lQ1OZWS0ak5-1AfroCpTbw6qj_i1SZencTXqffPgHUMaP_N_DVdC59OBazffPSYVTEeo0HrM5pF2eT_C_gN5x6XtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2399237611</pqid></control><display><type>article</type><title>Radiomics nomogram for preoperative differentiation of lung tuberculoma from adenocarcinoma in solitary pulmonary solid nodule</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Feng, Bao ; Chen, Xiangmeng ; Chen, Yehang ; Liu, Kunfeng ; Li, Kunwei ; Liu, Xueguo ; Yao, Nan ; Li, Zhi ; Li, Ronggang ; Zhang, Chaotong ; Ji, Jianbo ; Long, Wansheng</creator><creatorcontrib>Feng, Bao ; Chen, Xiangmeng ; Chen, Yehang ; Liu, Kunfeng ; Li, Kunwei ; Liu, Xueguo ; Yao, Nan ; Li, Zhi ; Li, Ronggang ; Zhang, Chaotong ; Ji, Jianbo ; Long, Wansheng</creatorcontrib><description>•Radiomics nomogram was used to preoperatively differentiate the TBG and LAC in patients with SPSN.•Deep learning-based VOI segmentation and quantitative 3D radiomics features were extracted and analyzed.•Radiomics nomogram achieved superior performance than either the radiomics signature or the clinical model alone. To investigate the preoperative differential diagnostic performance of a radiomics nomogram in tuberculous granuloma (TBG) and lung adenocarcinoma (LAC) appearing as solitary pulmonary solid nodules (SPSNs). We retrospectively recruited 426 patients with SPSNs from two centers and assigned them to training (n = 123), internal validation (n = 121), and external validation cohorts (n = 182). A model of deep learning (DL) was built for tumor segmentation from routine computed tomography (CT) images and extraction of 3D radiomics features. We used the least absolute shrinkage and selection operator (LASSO) logistic regression to build a radiomics signature. A clinical model was developed with clinical factors, including age, gender, and CT-based subjective findings (eg, lesion size, lesion location, lesion margin, lobulated sharp, and spiculation sign). We constructed individualized radiomics nomograms incorporating the radiomics signature and clinical factors to validate the diagnostic ability. Three factors – radiomics signature, age, and spiculation sign – were found to be independent predictors and were used to build the radiomics nomogram, which showed better diagnostic accuracy than any single model (all net reclassification improvement p &lt; 0.05). The area under curve yielded was 0.9660 (95% confidence interval [CI], 0.9390–0.9931), 0.9342 (95% CI, 0.8944–0.9739), and 0.9064 (95% CI, 0.8639–0.9490) for the training, internal validation, and external validation cohorts, respectively. Decision curve analysis (DCA) and stratification analysis showed the nomogram has potential for generalizability. The radiomics nomogram we developed can preoperatively distinguish between LAC and TBG in patient with a SPSN.</description><identifier>ISSN: 0720-048X</identifier><identifier>EISSN: 1872-7727</identifier><identifier>DOI: 10.1016/j.ejrad.2020.109022</identifier><identifier>PMID: 32371184</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Adenocarcinoma of Lung - diagnostic imaging ; Adolescent ; Adult ; Aged ; Diagnosis, Differential ; Female ; Humans ; Logistic Models ; Lung - diagnostic imaging ; Lung - pathology ; lung adenocarcinoma ; Lung Neoplasms - diagnostic imaging ; Male ; Middle Aged ; Nomograms ; Preoperative Care - methods ; Retrospective Studies ; Solitary Pulmonary Nodule - diagnostic imaging ; solitary pulmonary solid nodule radiomics ; Tomography, X-Ray Computed - methods ; Tuberculoma - diagnostic imaging ; Tuberculosis granuloma ; Young Adult</subject><ispartof>European journal of radiology, 2020-07, Vol.128, p.109022-109022, Article 109022</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright © 2020 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-7ba61861163e133f51d26840e32d14b107aded2b4718f81da9d1de70857169f43</citedby><cites>FETCH-LOGICAL-c359t-7ba61861163e133f51d26840e32d14b107aded2b4718f81da9d1de70857169f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejrad.2020.109022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32371184$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Bao</creatorcontrib><creatorcontrib>Chen, Xiangmeng</creatorcontrib><creatorcontrib>Chen, Yehang</creatorcontrib><creatorcontrib>Liu, Kunfeng</creatorcontrib><creatorcontrib>Li, Kunwei</creatorcontrib><creatorcontrib>Liu, Xueguo</creatorcontrib><creatorcontrib>Yao, Nan</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Li, Ronggang</creatorcontrib><creatorcontrib>Zhang, Chaotong</creatorcontrib><creatorcontrib>Ji, Jianbo</creatorcontrib><creatorcontrib>Long, Wansheng</creatorcontrib><title>Radiomics nomogram for preoperative differentiation of lung tuberculoma from adenocarcinoma in solitary pulmonary solid nodule</title><title>European journal of radiology</title><addtitle>Eur J Radiol</addtitle><description>•Radiomics nomogram was used to preoperatively differentiate the TBG and LAC in patients with SPSN.•Deep learning-based VOI segmentation and quantitative 3D radiomics features were extracted and analyzed.•Radiomics nomogram achieved superior performance than either the radiomics signature or the clinical model alone. To investigate the preoperative differential diagnostic performance of a radiomics nomogram in tuberculous granuloma (TBG) and lung adenocarcinoma (LAC) appearing as solitary pulmonary solid nodules (SPSNs). We retrospectively recruited 426 patients with SPSNs from two centers and assigned them to training (n = 123), internal validation (n = 121), and external validation cohorts (n = 182). A model of deep learning (DL) was built for tumor segmentation from routine computed tomography (CT) images and extraction of 3D radiomics features. We used the least absolute shrinkage and selection operator (LASSO) logistic regression to build a radiomics signature. A clinical model was developed with clinical factors, including age, gender, and CT-based subjective findings (eg, lesion size, lesion location, lesion margin, lobulated sharp, and spiculation sign). We constructed individualized radiomics nomograms incorporating the radiomics signature and clinical factors to validate the diagnostic ability. Three factors – radiomics signature, age, and spiculation sign – were found to be independent predictors and were used to build the radiomics nomogram, which showed better diagnostic accuracy than any single model (all net reclassification improvement p &lt; 0.05). The area under curve yielded was 0.9660 (95% confidence interval [CI], 0.9390–0.9931), 0.9342 (95% CI, 0.8944–0.9739), and 0.9064 (95% CI, 0.8639–0.9490) for the training, internal validation, and external validation cohorts, respectively. Decision curve analysis (DCA) and stratification analysis showed the nomogram has potential for generalizability. The radiomics nomogram we developed can preoperatively distinguish between LAC and TBG in patient with a SPSN.</description><subject>Adenocarcinoma of Lung - diagnostic imaging</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Diagnosis, Differential</subject><subject>Female</subject><subject>Humans</subject><subject>Logistic Models</subject><subject>Lung - diagnostic imaging</subject><subject>Lung - pathology</subject><subject>lung adenocarcinoma</subject><subject>Lung Neoplasms - diagnostic imaging</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Nomograms</subject><subject>Preoperative Care - methods</subject><subject>Retrospective Studies</subject><subject>Solitary Pulmonary Nodule - diagnostic imaging</subject><subject>solitary pulmonary solid nodule radiomics</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Tuberculoma - diagnostic imaging</subject><subject>Tuberculosis granuloma</subject><subject>Young Adult</subject><issn>0720-048X</issn><issn>1872-7727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMFuFSEUhonR2NvqE5gYlm7myoG5w8zChWmqNmli0tikO8LAoeFmgBFmmrjps8t4q0tXwJ__8MFHyDtge2DQfTzu8Zi13XPGt2RgnL8gO-glb6Tk8iXZMclZw9r-_oycl3JkjB3agb8mZ4ILCdC3O_J0q61PwZtCYwrpIetAXcp0zphmzHrxj0itdw4zxsXXc4o0OTqt8YEu64jZrFMKmrqcAtUWYzI6Gx-3zEda0uQXnX_ReZ1Cittui2yl2XXCN-SV01PBt8_rBbn7cvXj8ltz8_3r9eXnm8aIw7A0ctQd9B1AJxCEcAewvOtbhoJbaEdgspItH1sJvevB6sGCRcn6g4RucK24IB9O9845_VyxLCr4YnCadMS0FsXFMFQnlVCr4lQ1OZWS0ak5-1AfroCpTbw6qj_i1SZencTXqffPgHUMaP_N_DVdC59OBazffPSYVTEeo0HrM5pF2eT_C_gN5x6XtA</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Feng, Bao</creator><creator>Chen, Xiangmeng</creator><creator>Chen, Yehang</creator><creator>Liu, Kunfeng</creator><creator>Li, Kunwei</creator><creator>Liu, Xueguo</creator><creator>Yao, Nan</creator><creator>Li, Zhi</creator><creator>Li, Ronggang</creator><creator>Zhang, Chaotong</creator><creator>Ji, Jianbo</creator><creator>Long, Wansheng</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202007</creationdate><title>Radiomics nomogram for preoperative differentiation of lung tuberculoma from adenocarcinoma in solitary pulmonary solid nodule</title><author>Feng, Bao ; Chen, Xiangmeng ; Chen, Yehang ; Liu, Kunfeng ; Li, Kunwei ; Liu, Xueguo ; Yao, Nan ; Li, Zhi ; Li, Ronggang ; Zhang, Chaotong ; Ji, Jianbo ; Long, Wansheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-7ba61861163e133f51d26840e32d14b107aded2b4718f81da9d1de70857169f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adenocarcinoma of Lung - diagnostic imaging</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Diagnosis, Differential</topic><topic>Female</topic><topic>Humans</topic><topic>Logistic Models</topic><topic>Lung - diagnostic imaging</topic><topic>Lung - pathology</topic><topic>lung adenocarcinoma</topic><topic>Lung Neoplasms - diagnostic imaging</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Nomograms</topic><topic>Preoperative Care - methods</topic><topic>Retrospective Studies</topic><topic>Solitary Pulmonary Nodule - diagnostic imaging</topic><topic>solitary pulmonary solid nodule radiomics</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Tuberculoma - diagnostic imaging</topic><topic>Tuberculosis granuloma</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Bao</creatorcontrib><creatorcontrib>Chen, Xiangmeng</creatorcontrib><creatorcontrib>Chen, Yehang</creatorcontrib><creatorcontrib>Liu, Kunfeng</creatorcontrib><creatorcontrib>Li, Kunwei</creatorcontrib><creatorcontrib>Liu, Xueguo</creatorcontrib><creatorcontrib>Yao, Nan</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Li, Ronggang</creatorcontrib><creatorcontrib>Zhang, Chaotong</creatorcontrib><creatorcontrib>Ji, Jianbo</creatorcontrib><creatorcontrib>Long, Wansheng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Bao</au><au>Chen, Xiangmeng</au><au>Chen, Yehang</au><au>Liu, Kunfeng</au><au>Li, Kunwei</au><au>Liu, Xueguo</au><au>Yao, Nan</au><au>Li, Zhi</au><au>Li, Ronggang</au><au>Zhang, Chaotong</au><au>Ji, Jianbo</au><au>Long, Wansheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiomics nomogram for preoperative differentiation of lung tuberculoma from adenocarcinoma in solitary pulmonary solid nodule</atitle><jtitle>European journal of radiology</jtitle><addtitle>Eur J Radiol</addtitle><date>2020-07</date><risdate>2020</risdate><volume>128</volume><spage>109022</spage><epage>109022</epage><pages>109022-109022</pages><artnum>109022</artnum><issn>0720-048X</issn><eissn>1872-7727</eissn><abstract>•Radiomics nomogram was used to preoperatively differentiate the TBG and LAC in patients with SPSN.•Deep learning-based VOI segmentation and quantitative 3D radiomics features were extracted and analyzed.•Radiomics nomogram achieved superior performance than either the radiomics signature or the clinical model alone. To investigate the preoperative differential diagnostic performance of a radiomics nomogram in tuberculous granuloma (TBG) and lung adenocarcinoma (LAC) appearing as solitary pulmonary solid nodules (SPSNs). We retrospectively recruited 426 patients with SPSNs from two centers and assigned them to training (n = 123), internal validation (n = 121), and external validation cohorts (n = 182). A model of deep learning (DL) was built for tumor segmentation from routine computed tomography (CT) images and extraction of 3D radiomics features. We used the least absolute shrinkage and selection operator (LASSO) logistic regression to build a radiomics signature. A clinical model was developed with clinical factors, including age, gender, and CT-based subjective findings (eg, lesion size, lesion location, lesion margin, lobulated sharp, and spiculation sign). We constructed individualized radiomics nomograms incorporating the radiomics signature and clinical factors to validate the diagnostic ability. Three factors – radiomics signature, age, and spiculation sign – were found to be independent predictors and were used to build the radiomics nomogram, which showed better diagnostic accuracy than any single model (all net reclassification improvement p &lt; 0.05). The area under curve yielded was 0.9660 (95% confidence interval [CI], 0.9390–0.9931), 0.9342 (95% CI, 0.8944–0.9739), and 0.9064 (95% CI, 0.8639–0.9490) for the training, internal validation, and external validation cohorts, respectively. Decision curve analysis (DCA) and stratification analysis showed the nomogram has potential for generalizability. The radiomics nomogram we developed can preoperatively distinguish between LAC and TBG in patient with a SPSN.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>32371184</pmid><doi>10.1016/j.ejrad.2020.109022</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0720-048X
ispartof European journal of radiology, 2020-07, Vol.128, p.109022-109022, Article 109022
issn 0720-048X
1872-7727
language eng
recordid cdi_proquest_miscellaneous_2399237611
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Adenocarcinoma of Lung - diagnostic imaging
Adolescent
Adult
Aged
Diagnosis, Differential
Female
Humans
Logistic Models
Lung - diagnostic imaging
Lung - pathology
lung adenocarcinoma
Lung Neoplasms - diagnostic imaging
Male
Middle Aged
Nomograms
Preoperative Care - methods
Retrospective Studies
Solitary Pulmonary Nodule - diagnostic imaging
solitary pulmonary solid nodule radiomics
Tomography, X-Ray Computed - methods
Tuberculoma - diagnostic imaging
Tuberculosis granuloma
Young Adult
title Radiomics nomogram for preoperative differentiation of lung tuberculoma from adenocarcinoma in solitary pulmonary solid nodule
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiomics%20nomogram%20for%20preoperative%20differentiation%20of%20lung%20tuberculoma%20from%20adenocarcinoma%20in%20solitary%20pulmonary%20solid%20nodule&rft.jtitle=European%20journal%20of%20radiology&rft.au=Feng,%20Bao&rft.date=2020-07&rft.volume=128&rft.spage=109022&rft.epage=109022&rft.pages=109022-109022&rft.artnum=109022&rft.issn=0720-048X&rft.eissn=1872-7727&rft_id=info:doi/10.1016/j.ejrad.2020.109022&rft_dat=%3Cproquest_cross%3E2399237611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2399237611&rft_id=info:pmid/32371184&rft_els_id=S0720048X20302114&rfr_iscdi=true