Chip-Level Integration of Covalent Organic Frameworks for Trace Benzene Sensing
State-of-the-art chemical sensors based on covalent organic frameworks (COFs) are restricted to the transduction mechanism relying on luminescence quenching and/or enhancement. Herein, we present an alternative methodology via a combination of in situ-grown COF films with interdigitated electrodes u...
Gespeichert in:
Veröffentlicht in: | ACS sensors 2020-05, Vol.5 (5), p.1474-1481 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1481 |
---|---|
container_issue | 5 |
container_start_page | 1474 |
container_title | ACS sensors |
container_volume | 5 |
creator | Yuan, Hongye Li, Nanxi Linghu, Jiajun Dong, Jinqiao Wang, Yuxiang Karmakar, Avishek Yuan, Jiaren Li, Mengsha Buenconsejo, Pio John S Liu, Guoliang Cai, Hong Pennycook, Stephen John Singh, Navab Zhao, Dan |
description | State-of-the-art chemical sensors based on covalent organic frameworks (COFs) are restricted to the transduction mechanism relying on luminescence quenching and/or enhancement. Herein, we present an alternative methodology via a combination of in situ-grown COF films with interdigitated electrodes utilized for capacitive benzene detection. The resultant COF-based sensors exhibit highly sensitive and selective detection at room temperature toward benzene vapor over carbon dioxide, methane, and propane. Their benzene detection limit can reach 340 ppb, slightly inferior to those of the metal oxide semiconductor-based sensors, but with reduced power consumption and increased selectivity. Such a sensing behavior can be attributed to the large dielectric constant of the benzene molecule, distinctive adsorptivity of the chosen COF toward benzene, and structural distortion induced by the custom-made interaction pair, which is corroborated by sorption measurements and density functional theory (DFT) calculations. This study provides new perspectives for fabricating COF-based sensors with specific functionality targeted for selective gas detection. |
doi_str_mv | 10.1021/acssensors.0c00495 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2398622322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398622322</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-1a1caa2c9b7dab78133d201bbe34dbdb6430de9b1b09234bb8f1aa79cc2651d43</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0Eoqj0D3BAPnJJ8SMvHyGiUKlSD5SzZTubkpLYxU6K4NcT1PI4Ia20e5gZ7XwIXVAypYTRa2VCABucD1NiCIlFcoTOGM9ExFMRH_-5R2gSwoYQQpOUJTk5RSPOeJplNDlDy-K53kYL2EGD57aDtVdd7Sx2FS7cTjVgO7z0a2Vrg2detfDm_EvAlfN45ZUBfAv2Ayzgx-GZ2q7P0UmlmgCTwx6jp9ndqniIFsv7eXGziFRM8i6iihqlmBE6K5XOcsp5yQjVGnhc6lKnMSclCE01EYzHWucVVSoTxrA0oWXMx-hqn7v17rWH0Mm2DgaaRllwfZCMizxljA8zRmwvNd6F4KGSW1-3yr9LSuQXS_nLUh5YDqbLQ36vWyh_LN_kBsF0LxjMcuN6b4e6_yV-AowZgrM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398622322</pqid></control><display><type>article</type><title>Chip-Level Integration of Covalent Organic Frameworks for Trace Benzene Sensing</title><source>MEDLINE</source><source>ACS Publications</source><creator>Yuan, Hongye ; Li, Nanxi ; Linghu, Jiajun ; Dong, Jinqiao ; Wang, Yuxiang ; Karmakar, Avishek ; Yuan, Jiaren ; Li, Mengsha ; Buenconsejo, Pio John S ; Liu, Guoliang ; Cai, Hong ; Pennycook, Stephen John ; Singh, Navab ; Zhao, Dan</creator><creatorcontrib>Yuan, Hongye ; Li, Nanxi ; Linghu, Jiajun ; Dong, Jinqiao ; Wang, Yuxiang ; Karmakar, Avishek ; Yuan, Jiaren ; Li, Mengsha ; Buenconsejo, Pio John S ; Liu, Guoliang ; Cai, Hong ; Pennycook, Stephen John ; Singh, Navab ; Zhao, Dan</creatorcontrib><description>State-of-the-art chemical sensors based on covalent organic frameworks (COFs) are restricted to the transduction mechanism relying on luminescence quenching and/or enhancement. Herein, we present an alternative methodology via a combination of in situ-grown COF films with interdigitated electrodes utilized for capacitive benzene detection. The resultant COF-based sensors exhibit highly sensitive and selective detection at room temperature toward benzene vapor over carbon dioxide, methane, and propane. Their benzene detection limit can reach 340 ppb, slightly inferior to those of the metal oxide semiconductor-based sensors, but with reduced power consumption and increased selectivity. Such a sensing behavior can be attributed to the large dielectric constant of the benzene molecule, distinctive adsorptivity of the chosen COF toward benzene, and structural distortion induced by the custom-made interaction pair, which is corroborated by sorption measurements and density functional theory (DFT) calculations. This study provides new perspectives for fabricating COF-based sensors with specific functionality targeted for selective gas detection.</description><identifier>ISSN: 2379-3694</identifier><identifier>EISSN: 2379-3694</identifier><identifier>DOI: 10.1021/acssensors.0c00495</identifier><identifier>PMID: 32367715</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Benzene ; Gases ; Metal-Organic Frameworks</subject><ispartof>ACS sensors, 2020-05, Vol.5 (5), p.1474-1481</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-1a1caa2c9b7dab78133d201bbe34dbdb6430de9b1b09234bb8f1aa79cc2651d43</citedby><cites>FETCH-LOGICAL-a408t-1a1caa2c9b7dab78133d201bbe34dbdb6430de9b1b09234bb8f1aa79cc2651d43</cites><orcidid>0000-0002-3210-6323 ; 0000-0002-4427-2150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssensors.0c00495$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssensors.0c00495$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32367715$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Hongye</creatorcontrib><creatorcontrib>Li, Nanxi</creatorcontrib><creatorcontrib>Linghu, Jiajun</creatorcontrib><creatorcontrib>Dong, Jinqiao</creatorcontrib><creatorcontrib>Wang, Yuxiang</creatorcontrib><creatorcontrib>Karmakar, Avishek</creatorcontrib><creatorcontrib>Yuan, Jiaren</creatorcontrib><creatorcontrib>Li, Mengsha</creatorcontrib><creatorcontrib>Buenconsejo, Pio John S</creatorcontrib><creatorcontrib>Liu, Guoliang</creatorcontrib><creatorcontrib>Cai, Hong</creatorcontrib><creatorcontrib>Pennycook, Stephen John</creatorcontrib><creatorcontrib>Singh, Navab</creatorcontrib><creatorcontrib>Zhao, Dan</creatorcontrib><title>Chip-Level Integration of Covalent Organic Frameworks for Trace Benzene Sensing</title><title>ACS sensors</title><addtitle>ACS Sens</addtitle><description>State-of-the-art chemical sensors based on covalent organic frameworks (COFs) are restricted to the transduction mechanism relying on luminescence quenching and/or enhancement. Herein, we present an alternative methodology via a combination of in situ-grown COF films with interdigitated electrodes utilized for capacitive benzene detection. The resultant COF-based sensors exhibit highly sensitive and selective detection at room temperature toward benzene vapor over carbon dioxide, methane, and propane. Their benzene detection limit can reach 340 ppb, slightly inferior to those of the metal oxide semiconductor-based sensors, but with reduced power consumption and increased selectivity. Such a sensing behavior can be attributed to the large dielectric constant of the benzene molecule, distinctive adsorptivity of the chosen COF toward benzene, and structural distortion induced by the custom-made interaction pair, which is corroborated by sorption measurements and density functional theory (DFT) calculations. This study provides new perspectives for fabricating COF-based sensors with specific functionality targeted for selective gas detection.</description><subject>Benzene</subject><subject>Gases</subject><subject>Metal-Organic Frameworks</subject><issn>2379-3694</issn><issn>2379-3694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtPwzAQhC0Eoqj0D3BAPnJJ8SMvHyGiUKlSD5SzZTubkpLYxU6K4NcT1PI4Ia20e5gZ7XwIXVAypYTRa2VCABucD1NiCIlFcoTOGM9ExFMRH_-5R2gSwoYQQpOUJTk5RSPOeJplNDlDy-K53kYL2EGD57aDtVdd7Sx2FS7cTjVgO7z0a2Vrg2detfDm_EvAlfN45ZUBfAv2Ayzgx-GZ2q7P0UmlmgCTwx6jp9ndqniIFsv7eXGziFRM8i6iihqlmBE6K5XOcsp5yQjVGnhc6lKnMSclCE01EYzHWucVVSoTxrA0oWXMx-hqn7v17rWH0Mm2DgaaRllwfZCMizxljA8zRmwvNd6F4KGSW1-3yr9LSuQXS_nLUh5YDqbLQ36vWyh_LN_kBsF0LxjMcuN6b4e6_yV-AowZgrM</recordid><startdate>20200522</startdate><enddate>20200522</enddate><creator>Yuan, Hongye</creator><creator>Li, Nanxi</creator><creator>Linghu, Jiajun</creator><creator>Dong, Jinqiao</creator><creator>Wang, Yuxiang</creator><creator>Karmakar, Avishek</creator><creator>Yuan, Jiaren</creator><creator>Li, Mengsha</creator><creator>Buenconsejo, Pio John S</creator><creator>Liu, Guoliang</creator><creator>Cai, Hong</creator><creator>Pennycook, Stephen John</creator><creator>Singh, Navab</creator><creator>Zhao, Dan</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3210-6323</orcidid><orcidid>https://orcid.org/0000-0002-4427-2150</orcidid></search><sort><creationdate>20200522</creationdate><title>Chip-Level Integration of Covalent Organic Frameworks for Trace Benzene Sensing</title><author>Yuan, Hongye ; Li, Nanxi ; Linghu, Jiajun ; Dong, Jinqiao ; Wang, Yuxiang ; Karmakar, Avishek ; Yuan, Jiaren ; Li, Mengsha ; Buenconsejo, Pio John S ; Liu, Guoliang ; Cai, Hong ; Pennycook, Stephen John ; Singh, Navab ; Zhao, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-1a1caa2c9b7dab78133d201bbe34dbdb6430de9b1b09234bb8f1aa79cc2651d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Benzene</topic><topic>Gases</topic><topic>Metal-Organic Frameworks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Hongye</creatorcontrib><creatorcontrib>Li, Nanxi</creatorcontrib><creatorcontrib>Linghu, Jiajun</creatorcontrib><creatorcontrib>Dong, Jinqiao</creatorcontrib><creatorcontrib>Wang, Yuxiang</creatorcontrib><creatorcontrib>Karmakar, Avishek</creatorcontrib><creatorcontrib>Yuan, Jiaren</creatorcontrib><creatorcontrib>Li, Mengsha</creatorcontrib><creatorcontrib>Buenconsejo, Pio John S</creatorcontrib><creatorcontrib>Liu, Guoliang</creatorcontrib><creatorcontrib>Cai, Hong</creatorcontrib><creatorcontrib>Pennycook, Stephen John</creatorcontrib><creatorcontrib>Singh, Navab</creatorcontrib><creatorcontrib>Zhao, Dan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Hongye</au><au>Li, Nanxi</au><au>Linghu, Jiajun</au><au>Dong, Jinqiao</au><au>Wang, Yuxiang</au><au>Karmakar, Avishek</au><au>Yuan, Jiaren</au><au>Li, Mengsha</au><au>Buenconsejo, Pio John S</au><au>Liu, Guoliang</au><au>Cai, Hong</au><au>Pennycook, Stephen John</au><au>Singh, Navab</au><au>Zhao, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chip-Level Integration of Covalent Organic Frameworks for Trace Benzene Sensing</atitle><jtitle>ACS sensors</jtitle><addtitle>ACS Sens</addtitle><date>2020-05-22</date><risdate>2020</risdate><volume>5</volume><issue>5</issue><spage>1474</spage><epage>1481</epage><pages>1474-1481</pages><issn>2379-3694</issn><eissn>2379-3694</eissn><abstract>State-of-the-art chemical sensors based on covalent organic frameworks (COFs) are restricted to the transduction mechanism relying on luminescence quenching and/or enhancement. Herein, we present an alternative methodology via a combination of in situ-grown COF films with interdigitated electrodes utilized for capacitive benzene detection. The resultant COF-based sensors exhibit highly sensitive and selective detection at room temperature toward benzene vapor over carbon dioxide, methane, and propane. Their benzene detection limit can reach 340 ppb, slightly inferior to those of the metal oxide semiconductor-based sensors, but with reduced power consumption and increased selectivity. Such a sensing behavior can be attributed to the large dielectric constant of the benzene molecule, distinctive adsorptivity of the chosen COF toward benzene, and structural distortion induced by the custom-made interaction pair, which is corroborated by sorption measurements and density functional theory (DFT) calculations. This study provides new perspectives for fabricating COF-based sensors with specific functionality targeted for selective gas detection.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32367715</pmid><doi>10.1021/acssensors.0c00495</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3210-6323</orcidid><orcidid>https://orcid.org/0000-0002-4427-2150</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2379-3694 |
ispartof | ACS sensors, 2020-05, Vol.5 (5), p.1474-1481 |
issn | 2379-3694 2379-3694 |
language | eng |
recordid | cdi_proquest_miscellaneous_2398622322 |
source | MEDLINE; ACS Publications |
subjects | Benzene Gases Metal-Organic Frameworks |
title | Chip-Level Integration of Covalent Organic Frameworks for Trace Benzene Sensing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A52%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chip-Level%20Integration%20of%20Covalent%20Organic%20Frameworks%20for%20Trace%20Benzene%20Sensing&rft.jtitle=ACS%20sensors&rft.au=Yuan,%20Hongye&rft.date=2020-05-22&rft.volume=5&rft.issue=5&rft.spage=1474&rft.epage=1481&rft.pages=1474-1481&rft.issn=2379-3694&rft.eissn=2379-3694&rft_id=info:doi/10.1021/acssensors.0c00495&rft_dat=%3Cproquest_cross%3E2398622322%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398622322&rft_id=info:pmid/32367715&rfr_iscdi=true |