Chip-Level Integration of Covalent Organic Frameworks for Trace Benzene Sensing

State-of-the-art chemical sensors based on covalent organic frameworks (COFs) are restricted to the transduction mechanism relying on luminescence quenching and/or enhancement. Herein, we present an alternative methodology via a combination of in situ-grown COF films with interdigitated electrodes u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sensors 2020-05, Vol.5 (5), p.1474-1481
Hauptverfasser: Yuan, Hongye, Li, Nanxi, Linghu, Jiajun, Dong, Jinqiao, Wang, Yuxiang, Karmakar, Avishek, Yuan, Jiaren, Li, Mengsha, Buenconsejo, Pio John S, Liu, Guoliang, Cai, Hong, Pennycook, Stephen John, Singh, Navab, Zhao, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1481
container_issue 5
container_start_page 1474
container_title ACS sensors
container_volume 5
creator Yuan, Hongye
Li, Nanxi
Linghu, Jiajun
Dong, Jinqiao
Wang, Yuxiang
Karmakar, Avishek
Yuan, Jiaren
Li, Mengsha
Buenconsejo, Pio John S
Liu, Guoliang
Cai, Hong
Pennycook, Stephen John
Singh, Navab
Zhao, Dan
description State-of-the-art chemical sensors based on covalent organic frameworks (COFs) are restricted to the transduction mechanism relying on luminescence quenching and/or enhancement. Herein, we present an alternative methodology via a combination of in situ-grown COF films with interdigitated electrodes utilized for capacitive benzene detection. The resultant COF-based sensors exhibit highly sensitive and selective detection at room temperature toward benzene vapor over carbon dioxide, methane, and propane. Their benzene detection limit can reach 340 ppb, slightly inferior to those of the metal oxide semiconductor-based sensors, but with reduced power consumption and increased selectivity. Such a sensing behavior can be attributed to the large dielectric constant of the benzene molecule, distinctive adsorptivity of the chosen COF toward benzene, and structural distortion induced by the custom-made interaction pair, which is corroborated by sorption measurements and density functional theory (DFT) calculations. This study provides new perspectives for fabricating COF-based sensors with specific functionality targeted for selective gas detection.
doi_str_mv 10.1021/acssensors.0c00495
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2398622322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398622322</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-1a1caa2c9b7dab78133d201bbe34dbdb6430de9b1b09234bb8f1aa79cc2651d43</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0Eoqj0D3BAPnJJ8SMvHyGiUKlSD5SzZTubkpLYxU6K4NcT1PI4Ia20e5gZ7XwIXVAypYTRa2VCABucD1NiCIlFcoTOGM9ExFMRH_-5R2gSwoYQQpOUJTk5RSPOeJplNDlDy-K53kYL2EGD57aDtVdd7Sx2FS7cTjVgO7z0a2Vrg2detfDm_EvAlfN45ZUBfAv2Ayzgx-GZ2q7P0UmlmgCTwx6jp9ndqniIFsv7eXGziFRM8i6iihqlmBE6K5XOcsp5yQjVGnhc6lKnMSclCE01EYzHWucVVSoTxrA0oWXMx-hqn7v17rWH0Mm2DgaaRllwfZCMizxljA8zRmwvNd6F4KGSW1-3yr9LSuQXS_nLUh5YDqbLQ36vWyh_LN_kBsF0LxjMcuN6b4e6_yV-AowZgrM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398622322</pqid></control><display><type>article</type><title>Chip-Level Integration of Covalent Organic Frameworks for Trace Benzene Sensing</title><source>MEDLINE</source><source>ACS Publications</source><creator>Yuan, Hongye ; Li, Nanxi ; Linghu, Jiajun ; Dong, Jinqiao ; Wang, Yuxiang ; Karmakar, Avishek ; Yuan, Jiaren ; Li, Mengsha ; Buenconsejo, Pio John S ; Liu, Guoliang ; Cai, Hong ; Pennycook, Stephen John ; Singh, Navab ; Zhao, Dan</creator><creatorcontrib>Yuan, Hongye ; Li, Nanxi ; Linghu, Jiajun ; Dong, Jinqiao ; Wang, Yuxiang ; Karmakar, Avishek ; Yuan, Jiaren ; Li, Mengsha ; Buenconsejo, Pio John S ; Liu, Guoliang ; Cai, Hong ; Pennycook, Stephen John ; Singh, Navab ; Zhao, Dan</creatorcontrib><description>State-of-the-art chemical sensors based on covalent organic frameworks (COFs) are restricted to the transduction mechanism relying on luminescence quenching and/or enhancement. Herein, we present an alternative methodology via a combination of in situ-grown COF films with interdigitated electrodes utilized for capacitive benzene detection. The resultant COF-based sensors exhibit highly sensitive and selective detection at room temperature toward benzene vapor over carbon dioxide, methane, and propane. Their benzene detection limit can reach 340 ppb, slightly inferior to those of the metal oxide semiconductor-based sensors, but with reduced power consumption and increased selectivity. Such a sensing behavior can be attributed to the large dielectric constant of the benzene molecule, distinctive adsorptivity of the chosen COF toward benzene, and structural distortion induced by the custom-made interaction pair, which is corroborated by sorption measurements and density functional theory (DFT) calculations. This study provides new perspectives for fabricating COF-based sensors with specific functionality targeted for selective gas detection.</description><identifier>ISSN: 2379-3694</identifier><identifier>EISSN: 2379-3694</identifier><identifier>DOI: 10.1021/acssensors.0c00495</identifier><identifier>PMID: 32367715</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Benzene ; Gases ; Metal-Organic Frameworks</subject><ispartof>ACS sensors, 2020-05, Vol.5 (5), p.1474-1481</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-1a1caa2c9b7dab78133d201bbe34dbdb6430de9b1b09234bb8f1aa79cc2651d43</citedby><cites>FETCH-LOGICAL-a408t-1a1caa2c9b7dab78133d201bbe34dbdb6430de9b1b09234bb8f1aa79cc2651d43</cites><orcidid>0000-0002-3210-6323 ; 0000-0002-4427-2150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssensors.0c00495$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssensors.0c00495$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32367715$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Hongye</creatorcontrib><creatorcontrib>Li, Nanxi</creatorcontrib><creatorcontrib>Linghu, Jiajun</creatorcontrib><creatorcontrib>Dong, Jinqiao</creatorcontrib><creatorcontrib>Wang, Yuxiang</creatorcontrib><creatorcontrib>Karmakar, Avishek</creatorcontrib><creatorcontrib>Yuan, Jiaren</creatorcontrib><creatorcontrib>Li, Mengsha</creatorcontrib><creatorcontrib>Buenconsejo, Pio John S</creatorcontrib><creatorcontrib>Liu, Guoliang</creatorcontrib><creatorcontrib>Cai, Hong</creatorcontrib><creatorcontrib>Pennycook, Stephen John</creatorcontrib><creatorcontrib>Singh, Navab</creatorcontrib><creatorcontrib>Zhao, Dan</creatorcontrib><title>Chip-Level Integration of Covalent Organic Frameworks for Trace Benzene Sensing</title><title>ACS sensors</title><addtitle>ACS Sens</addtitle><description>State-of-the-art chemical sensors based on covalent organic frameworks (COFs) are restricted to the transduction mechanism relying on luminescence quenching and/or enhancement. Herein, we present an alternative methodology via a combination of in situ-grown COF films with interdigitated electrodes utilized for capacitive benzene detection. The resultant COF-based sensors exhibit highly sensitive and selective detection at room temperature toward benzene vapor over carbon dioxide, methane, and propane. Their benzene detection limit can reach 340 ppb, slightly inferior to those of the metal oxide semiconductor-based sensors, but with reduced power consumption and increased selectivity. Such a sensing behavior can be attributed to the large dielectric constant of the benzene molecule, distinctive adsorptivity of the chosen COF toward benzene, and structural distortion induced by the custom-made interaction pair, which is corroborated by sorption measurements and density functional theory (DFT) calculations. This study provides new perspectives for fabricating COF-based sensors with specific functionality targeted for selective gas detection.</description><subject>Benzene</subject><subject>Gases</subject><subject>Metal-Organic Frameworks</subject><issn>2379-3694</issn><issn>2379-3694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtPwzAQhC0Eoqj0D3BAPnJJ8SMvHyGiUKlSD5SzZTubkpLYxU6K4NcT1PI4Ia20e5gZ7XwIXVAypYTRa2VCABucD1NiCIlFcoTOGM9ExFMRH_-5R2gSwoYQQpOUJTk5RSPOeJplNDlDy-K53kYL2EGD57aDtVdd7Sx2FS7cTjVgO7z0a2Vrg2detfDm_EvAlfN45ZUBfAv2Ayzgx-GZ2q7P0UmlmgCTwx6jp9ndqniIFsv7eXGziFRM8i6iihqlmBE6K5XOcsp5yQjVGnhc6lKnMSclCE01EYzHWucVVSoTxrA0oWXMx-hqn7v17rWH0Mm2DgaaRllwfZCMizxljA8zRmwvNd6F4KGSW1-3yr9LSuQXS_nLUh5YDqbLQ36vWyh_LN_kBsF0LxjMcuN6b4e6_yV-AowZgrM</recordid><startdate>20200522</startdate><enddate>20200522</enddate><creator>Yuan, Hongye</creator><creator>Li, Nanxi</creator><creator>Linghu, Jiajun</creator><creator>Dong, Jinqiao</creator><creator>Wang, Yuxiang</creator><creator>Karmakar, Avishek</creator><creator>Yuan, Jiaren</creator><creator>Li, Mengsha</creator><creator>Buenconsejo, Pio John S</creator><creator>Liu, Guoliang</creator><creator>Cai, Hong</creator><creator>Pennycook, Stephen John</creator><creator>Singh, Navab</creator><creator>Zhao, Dan</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3210-6323</orcidid><orcidid>https://orcid.org/0000-0002-4427-2150</orcidid></search><sort><creationdate>20200522</creationdate><title>Chip-Level Integration of Covalent Organic Frameworks for Trace Benzene Sensing</title><author>Yuan, Hongye ; Li, Nanxi ; Linghu, Jiajun ; Dong, Jinqiao ; Wang, Yuxiang ; Karmakar, Avishek ; Yuan, Jiaren ; Li, Mengsha ; Buenconsejo, Pio John S ; Liu, Guoliang ; Cai, Hong ; Pennycook, Stephen John ; Singh, Navab ; Zhao, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-1a1caa2c9b7dab78133d201bbe34dbdb6430de9b1b09234bb8f1aa79cc2651d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Benzene</topic><topic>Gases</topic><topic>Metal-Organic Frameworks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Hongye</creatorcontrib><creatorcontrib>Li, Nanxi</creatorcontrib><creatorcontrib>Linghu, Jiajun</creatorcontrib><creatorcontrib>Dong, Jinqiao</creatorcontrib><creatorcontrib>Wang, Yuxiang</creatorcontrib><creatorcontrib>Karmakar, Avishek</creatorcontrib><creatorcontrib>Yuan, Jiaren</creatorcontrib><creatorcontrib>Li, Mengsha</creatorcontrib><creatorcontrib>Buenconsejo, Pio John S</creatorcontrib><creatorcontrib>Liu, Guoliang</creatorcontrib><creatorcontrib>Cai, Hong</creatorcontrib><creatorcontrib>Pennycook, Stephen John</creatorcontrib><creatorcontrib>Singh, Navab</creatorcontrib><creatorcontrib>Zhao, Dan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Hongye</au><au>Li, Nanxi</au><au>Linghu, Jiajun</au><au>Dong, Jinqiao</au><au>Wang, Yuxiang</au><au>Karmakar, Avishek</au><au>Yuan, Jiaren</au><au>Li, Mengsha</au><au>Buenconsejo, Pio John S</au><au>Liu, Guoliang</au><au>Cai, Hong</au><au>Pennycook, Stephen John</au><au>Singh, Navab</au><au>Zhao, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chip-Level Integration of Covalent Organic Frameworks for Trace Benzene Sensing</atitle><jtitle>ACS sensors</jtitle><addtitle>ACS Sens</addtitle><date>2020-05-22</date><risdate>2020</risdate><volume>5</volume><issue>5</issue><spage>1474</spage><epage>1481</epage><pages>1474-1481</pages><issn>2379-3694</issn><eissn>2379-3694</eissn><abstract>State-of-the-art chemical sensors based on covalent organic frameworks (COFs) are restricted to the transduction mechanism relying on luminescence quenching and/or enhancement. Herein, we present an alternative methodology via a combination of in situ-grown COF films with interdigitated electrodes utilized for capacitive benzene detection. The resultant COF-based sensors exhibit highly sensitive and selective detection at room temperature toward benzene vapor over carbon dioxide, methane, and propane. Their benzene detection limit can reach 340 ppb, slightly inferior to those of the metal oxide semiconductor-based sensors, but with reduced power consumption and increased selectivity. Such a sensing behavior can be attributed to the large dielectric constant of the benzene molecule, distinctive adsorptivity of the chosen COF toward benzene, and structural distortion induced by the custom-made interaction pair, which is corroborated by sorption measurements and density functional theory (DFT) calculations. This study provides new perspectives for fabricating COF-based sensors with specific functionality targeted for selective gas detection.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32367715</pmid><doi>10.1021/acssensors.0c00495</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3210-6323</orcidid><orcidid>https://orcid.org/0000-0002-4427-2150</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2379-3694
ispartof ACS sensors, 2020-05, Vol.5 (5), p.1474-1481
issn 2379-3694
2379-3694
language eng
recordid cdi_proquest_miscellaneous_2398622322
source MEDLINE; ACS Publications
subjects Benzene
Gases
Metal-Organic Frameworks
title Chip-Level Integration of Covalent Organic Frameworks for Trace Benzene Sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A52%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chip-Level%20Integration%20of%20Covalent%20Organic%20Frameworks%20for%20Trace%20Benzene%20Sensing&rft.jtitle=ACS%20sensors&rft.au=Yuan,%20Hongye&rft.date=2020-05-22&rft.volume=5&rft.issue=5&rft.spage=1474&rft.epage=1481&rft.pages=1474-1481&rft.issn=2379-3694&rft.eissn=2379-3694&rft_id=info:doi/10.1021/acssensors.0c00495&rft_dat=%3Cproquest_cross%3E2398622322%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398622322&rft_id=info:pmid/32367715&rfr_iscdi=true