A Rational Reconfiguration of Electrolyte for High‐Energy and Long‐Life Lithium–Chalcogen Batteries
Lithium–chalcogen batteries are an appealing choice for high‐energy‐storage technology. However, the traditional battery that employs liquid electrolytes suffers irreversible loss and shuttle of the soluble intermediates. New batteries that adopt Li+‐conductive polymer electrolytes to mitigate the s...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2020-06, Vol.32 (23), p.e2000302-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 23 |
container_start_page | e2000302 |
container_title | Advanced materials (Weinheim) |
container_volume | 32 |
creator | Wang, Wen‐Peng Zhang, Juan Yin, Ya‐Xia Duan, Hui Chou, Jia Li, Sheng‐Yi Yan, Min Xin, Sen Guo, Yu‐Guo |
description | Lithium–chalcogen batteries are an appealing choice for high‐energy‐storage technology. However, the traditional battery that employs liquid electrolytes suffers irreversible loss and shuttle of the soluble intermediates. New batteries that adopt Li+‐conductive polymer electrolytes to mitigate the shuttle problem are hindered by incomplete discharge of sulfur/selenium. To address the trade‐off between energy and cycle life, a new electrolyte is proposed that reconciles the merits of liquid and polymer electrolytes while resolving each of their inferiorities. An in situ interfacial polymerization strategy is developed to create a liquid/polymer hybrid electrolyte between a LiPF6‐coated separator and the cathode. A polymer‐gel electrolyte in situ formed on the separator shows high Li+ transfer number to serve as a chemical barrier against the shuttle effect. Between the gel electrolyte and the cathode surface is a thin gradient solidification layer that enables transformation from gel to liquid so that the liquid electrolyte is maintained inside the cathode for rapid Li+ transport and high utilization of active materials. By addressing the dilemma between the shuttle chemistry and incomplete discharge of S/Se, the new electrolyte configuration demonstrates its feasibility to trigger higher capacity retention of the cathodes. As a result, Li–S and Li–Se cells with high energy and long cycle lives are realized, showing promise for practical use.
The rational reconfiguration of an electrolyte enabled by an in situ interfacial polymerization strategy is demonstrated. This strategy endows Li–S and Li–Se batteries with high capacity, stable cycling, and excellent rate performances simultaneously, and may become a new pathway toward the large‐scale and cost‐effective applications of future Li metal batteries. |
doi_str_mv | 10.1002/adma.202000302 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2398164219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2411063115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4782-49df9e706fefd56f3083f30a4297233e912540cfddf1459b1b03b164c3f9ba453</originalsourceid><addsrcrecordid>eNqFkc1O3DAURi1UBFNg22VlqZtuMlz_JDNeTqdTQApCQrCOnOQ6Y5TE1E6EZscjVOob8iR4GKBSN8jStXR17ll8HyFfGEwZAD_VdaenHDgACOB7ZMJSzhIJKv1EJqBEmqhMzg_J5xDuIqMyyA7IoeAii49NiF3Qaz1Y1-uWXmPlemOb0b9sqDN01WI1eNduBqTGeXpum_XT459Vj77ZUN3XNHd9Eze5NUhzO6zt2D09_l2udVu5Bnv6Qw8DeovhmOwb3QY8ef2PyO2v1c3yPMmvzi6Wizyp5GzOE6lqo3AGmUFTp5kRMBdxaMnVjAuBivFUQmXq2jCZqpKVIEqWyUoYVWqZiiPyfee99-73iGEoOhsqbFvdoxtDwYWaR54zFdFv_6F3bvQxikhJxiAmxLbC6Y6qvAvBoynuve203xQMim0JxbaE4r2EePD1VTuWHdbv-FvqEVA74MG2uPlAVyx-Xi7-yZ8BHDeVJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2411063115</pqid></control><display><type>article</type><title>A Rational Reconfiguration of Electrolyte for High‐Energy and Long‐Life Lithium–Chalcogen Batteries</title><source>Access via Wiley Online Library</source><creator>Wang, Wen‐Peng ; Zhang, Juan ; Yin, Ya‐Xia ; Duan, Hui ; Chou, Jia ; Li, Sheng‐Yi ; Yan, Min ; Xin, Sen ; Guo, Yu‐Guo</creator><creatorcontrib>Wang, Wen‐Peng ; Zhang, Juan ; Yin, Ya‐Xia ; Duan, Hui ; Chou, Jia ; Li, Sheng‐Yi ; Yan, Min ; Xin, Sen ; Guo, Yu‐Guo</creatorcontrib><description>Lithium–chalcogen batteries are an appealing choice for high‐energy‐storage technology. However, the traditional battery that employs liquid electrolytes suffers irreversible loss and shuttle of the soluble intermediates. New batteries that adopt Li+‐conductive polymer electrolytes to mitigate the shuttle problem are hindered by incomplete discharge of sulfur/selenium. To address the trade‐off between energy and cycle life, a new electrolyte is proposed that reconciles the merits of liquid and polymer electrolytes while resolving each of their inferiorities. An in situ interfacial polymerization strategy is developed to create a liquid/polymer hybrid electrolyte between a LiPF6‐coated separator and the cathode. A polymer‐gel electrolyte in situ formed on the separator shows high Li+ transfer number to serve as a chemical barrier against the shuttle effect. Between the gel electrolyte and the cathode surface is a thin gradient solidification layer that enables transformation from gel to liquid so that the liquid electrolyte is maintained inside the cathode for rapid Li+ transport and high utilization of active materials. By addressing the dilemma between the shuttle chemistry and incomplete discharge of S/Se, the new electrolyte configuration demonstrates its feasibility to trigger higher capacity retention of the cathodes. As a result, Li–S and Li–Se cells with high energy and long cycle lives are realized, showing promise for practical use.
The rational reconfiguration of an electrolyte enabled by an in situ interfacial polymerization strategy is demonstrated. This strategy endows Li–S and Li–Se batteries with high capacity, stable cycling, and excellent rate performances simultaneously, and may become a new pathway toward the large‐scale and cost‐effective applications of future Li metal batteries.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202000302</identifier><identifier>PMID: 32363631</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; Conducting polymers ; Discharge ; Electrolytes ; Electrolytic cells ; Energy storage ; functional composite separators ; hybrid electrolytes ; in situ interfacial polymerization ; Lithium ; lithium–selenium batteries ; lithium–sulfur batteries ; Materials science ; Polymers ; Reconfiguration ; Selenium ; Separators ; Solidification ; Storage batteries</subject><ispartof>Advanced materials (Weinheim), 2020-06, Vol.32 (23), p.e2000302-n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4782-49df9e706fefd56f3083f30a4297233e912540cfddf1459b1b03b164c3f9ba453</citedby><cites>FETCH-LOGICAL-c4782-49df9e706fefd56f3083f30a4297233e912540cfddf1459b1b03b164c3f9ba453</cites><orcidid>0000-0003-0322-8476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202000302$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202000302$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32363631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Wen‐Peng</creatorcontrib><creatorcontrib>Zhang, Juan</creatorcontrib><creatorcontrib>Yin, Ya‐Xia</creatorcontrib><creatorcontrib>Duan, Hui</creatorcontrib><creatorcontrib>Chou, Jia</creatorcontrib><creatorcontrib>Li, Sheng‐Yi</creatorcontrib><creatorcontrib>Yan, Min</creatorcontrib><creatorcontrib>Xin, Sen</creatorcontrib><creatorcontrib>Guo, Yu‐Guo</creatorcontrib><title>A Rational Reconfiguration of Electrolyte for High‐Energy and Long‐Life Lithium–Chalcogen Batteries</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Lithium–chalcogen batteries are an appealing choice for high‐energy‐storage technology. However, the traditional battery that employs liquid electrolytes suffers irreversible loss and shuttle of the soluble intermediates. New batteries that adopt Li+‐conductive polymer electrolytes to mitigate the shuttle problem are hindered by incomplete discharge of sulfur/selenium. To address the trade‐off between energy and cycle life, a new electrolyte is proposed that reconciles the merits of liquid and polymer electrolytes while resolving each of their inferiorities. An in situ interfacial polymerization strategy is developed to create a liquid/polymer hybrid electrolyte between a LiPF6‐coated separator and the cathode. A polymer‐gel electrolyte in situ formed on the separator shows high Li+ transfer number to serve as a chemical barrier against the shuttle effect. Between the gel electrolyte and the cathode surface is a thin gradient solidification layer that enables transformation from gel to liquid so that the liquid electrolyte is maintained inside the cathode for rapid Li+ transport and high utilization of active materials. By addressing the dilemma between the shuttle chemistry and incomplete discharge of S/Se, the new electrolyte configuration demonstrates its feasibility to trigger higher capacity retention of the cathodes. As a result, Li–S and Li–Se cells with high energy and long cycle lives are realized, showing promise for practical use.
The rational reconfiguration of an electrolyte enabled by an in situ interfacial polymerization strategy is demonstrated. This strategy endows Li–S and Li–Se batteries with high capacity, stable cycling, and excellent rate performances simultaneously, and may become a new pathway toward the large‐scale and cost‐effective applications of future Li metal batteries.</description><subject>Cathodes</subject><subject>Conducting polymers</subject><subject>Discharge</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Energy storage</subject><subject>functional composite separators</subject><subject>hybrid electrolytes</subject><subject>in situ interfacial polymerization</subject><subject>Lithium</subject><subject>lithium–selenium batteries</subject><subject>lithium–sulfur batteries</subject><subject>Materials science</subject><subject>Polymers</subject><subject>Reconfiguration</subject><subject>Selenium</subject><subject>Separators</subject><subject>Solidification</subject><subject>Storage batteries</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkc1O3DAURi1UBFNg22VlqZtuMlz_JDNeTqdTQApCQrCOnOQ6Y5TE1E6EZscjVOob8iR4GKBSN8jStXR17ll8HyFfGEwZAD_VdaenHDgACOB7ZMJSzhIJKv1EJqBEmqhMzg_J5xDuIqMyyA7IoeAii49NiF3Qaz1Y1-uWXmPlemOb0b9sqDN01WI1eNduBqTGeXpum_XT459Vj77ZUN3XNHd9Eze5NUhzO6zt2D09_l2udVu5Bnv6Qw8DeovhmOwb3QY8ef2PyO2v1c3yPMmvzi6Wizyp5GzOE6lqo3AGmUFTp5kRMBdxaMnVjAuBivFUQmXq2jCZqpKVIEqWyUoYVWqZiiPyfee99-73iGEoOhsqbFvdoxtDwYWaR54zFdFv_6F3bvQxikhJxiAmxLbC6Y6qvAvBoynuve203xQMim0JxbaE4r2EePD1VTuWHdbv-FvqEVA74MG2uPlAVyx-Xi7-yZ8BHDeVJw</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Wang, Wen‐Peng</creator><creator>Zhang, Juan</creator><creator>Yin, Ya‐Xia</creator><creator>Duan, Hui</creator><creator>Chou, Jia</creator><creator>Li, Sheng‐Yi</creator><creator>Yan, Min</creator><creator>Xin, Sen</creator><creator>Guo, Yu‐Guo</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0322-8476</orcidid></search><sort><creationdate>20200601</creationdate><title>A Rational Reconfiguration of Electrolyte for High‐Energy and Long‐Life Lithium–Chalcogen Batteries</title><author>Wang, Wen‐Peng ; Zhang, Juan ; Yin, Ya‐Xia ; Duan, Hui ; Chou, Jia ; Li, Sheng‐Yi ; Yan, Min ; Xin, Sen ; Guo, Yu‐Guo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4782-49df9e706fefd56f3083f30a4297233e912540cfddf1459b1b03b164c3f9ba453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cathodes</topic><topic>Conducting polymers</topic><topic>Discharge</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Energy storage</topic><topic>functional composite separators</topic><topic>hybrid electrolytes</topic><topic>in situ interfacial polymerization</topic><topic>Lithium</topic><topic>lithium–selenium batteries</topic><topic>lithium–sulfur batteries</topic><topic>Materials science</topic><topic>Polymers</topic><topic>Reconfiguration</topic><topic>Selenium</topic><topic>Separators</topic><topic>Solidification</topic><topic>Storage batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wen‐Peng</creatorcontrib><creatorcontrib>Zhang, Juan</creatorcontrib><creatorcontrib>Yin, Ya‐Xia</creatorcontrib><creatorcontrib>Duan, Hui</creatorcontrib><creatorcontrib>Chou, Jia</creatorcontrib><creatorcontrib>Li, Sheng‐Yi</creatorcontrib><creatorcontrib>Yan, Min</creatorcontrib><creatorcontrib>Xin, Sen</creatorcontrib><creatorcontrib>Guo, Yu‐Guo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wen‐Peng</au><au>Zhang, Juan</au><au>Yin, Ya‐Xia</au><au>Duan, Hui</au><au>Chou, Jia</au><au>Li, Sheng‐Yi</au><au>Yan, Min</au><au>Xin, Sen</au><au>Guo, Yu‐Guo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Rational Reconfiguration of Electrolyte for High‐Energy and Long‐Life Lithium–Chalcogen Batteries</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>32</volume><issue>23</issue><spage>e2000302</spage><epage>n/a</epage><pages>e2000302-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Lithium–chalcogen batteries are an appealing choice for high‐energy‐storage technology. However, the traditional battery that employs liquid electrolytes suffers irreversible loss and shuttle of the soluble intermediates. New batteries that adopt Li+‐conductive polymer electrolytes to mitigate the shuttle problem are hindered by incomplete discharge of sulfur/selenium. To address the trade‐off between energy and cycle life, a new electrolyte is proposed that reconciles the merits of liquid and polymer electrolytes while resolving each of their inferiorities. An in situ interfacial polymerization strategy is developed to create a liquid/polymer hybrid electrolyte between a LiPF6‐coated separator and the cathode. A polymer‐gel electrolyte in situ formed on the separator shows high Li+ transfer number to serve as a chemical barrier against the shuttle effect. Between the gel electrolyte and the cathode surface is a thin gradient solidification layer that enables transformation from gel to liquid so that the liquid electrolyte is maintained inside the cathode for rapid Li+ transport and high utilization of active materials. By addressing the dilemma between the shuttle chemistry and incomplete discharge of S/Se, the new electrolyte configuration demonstrates its feasibility to trigger higher capacity retention of the cathodes. As a result, Li–S and Li–Se cells with high energy and long cycle lives are realized, showing promise for practical use.
The rational reconfiguration of an electrolyte enabled by an in situ interfacial polymerization strategy is demonstrated. This strategy endows Li–S and Li–Se batteries with high capacity, stable cycling, and excellent rate performances simultaneously, and may become a new pathway toward the large‐scale and cost‐effective applications of future Li metal batteries.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32363631</pmid><doi>10.1002/adma.202000302</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0322-8476</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2020-06, Vol.32 (23), p.e2000302-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2398164219 |
source | Access via Wiley Online Library |
subjects | Cathodes Conducting polymers Discharge Electrolytes Electrolytic cells Energy storage functional composite separators hybrid electrolytes in situ interfacial polymerization Lithium lithium–selenium batteries lithium–sulfur batteries Materials science Polymers Reconfiguration Selenium Separators Solidification Storage batteries |
title | A Rational Reconfiguration of Electrolyte for High‐Energy and Long‐Life Lithium–Chalcogen Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A04%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Rational%20Reconfiguration%20of%20Electrolyte%20for%20High%E2%80%90Energy%20and%20Long%E2%80%90Life%20Lithium%E2%80%93Chalcogen%20Batteries&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wang,%20Wen%E2%80%90Peng&rft.date=2020-06-01&rft.volume=32&rft.issue=23&rft.spage=e2000302&rft.epage=n/a&rft.pages=e2000302-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202000302&rft_dat=%3Cproquest_cross%3E2411063115%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2411063115&rft_id=info:pmid/32363631&rfr_iscdi=true |