A Rational Reconfiguration of Electrolyte for High‐Energy and Long‐Life Lithium–Chalcogen Batteries

Lithium–chalcogen batteries are an appealing choice for high‐energy‐storage technology. However, the traditional battery that employs liquid electrolytes suffers irreversible loss and shuttle of the soluble intermediates. New batteries that adopt Li+‐conductive polymer electrolytes to mitigate the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2020-06, Vol.32 (23), p.e2000302-n/a
Hauptverfasser: Wang, Wen‐Peng, Zhang, Juan, Yin, Ya‐Xia, Duan, Hui, Chou, Jia, Li, Sheng‐Yi, Yan, Min, Xin, Sen, Guo, Yu‐Guo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page e2000302
container_title Advanced materials (Weinheim)
container_volume 32
creator Wang, Wen‐Peng
Zhang, Juan
Yin, Ya‐Xia
Duan, Hui
Chou, Jia
Li, Sheng‐Yi
Yan, Min
Xin, Sen
Guo, Yu‐Guo
description Lithium–chalcogen batteries are an appealing choice for high‐energy‐storage technology. However, the traditional battery that employs liquid electrolytes suffers irreversible loss and shuttle of the soluble intermediates. New batteries that adopt Li+‐conductive polymer electrolytes to mitigate the shuttle problem are hindered by incomplete discharge of sulfur/selenium. To address the trade‐off between energy and cycle life, a new electrolyte is proposed that reconciles the merits of liquid and polymer electrolytes while resolving each of their inferiorities. An in situ interfacial polymerization strategy is developed to create a liquid/polymer hybrid electrolyte between a LiPF6‐coated separator and the cathode. A polymer‐gel electrolyte in situ formed on the separator shows high Li+ transfer number to serve as a chemical barrier against the shuttle effect. Between the gel electrolyte and the cathode surface is a thin gradient solidification layer that enables transformation from gel to liquid so that the liquid electrolyte is maintained inside the cathode for rapid Li+ transport and high utilization of active materials. By addressing the dilemma between the shuttle chemistry and incomplete discharge of S/Se, the new electrolyte configuration demonstrates its feasibility to trigger higher capacity retention of the cathodes. As a result, Li–S and Li–Se cells with high energy and long cycle lives are realized, showing promise for practical use. The rational reconfiguration of an electrolyte enabled by an in situ interfacial polymerization strategy is demonstrated. This strategy endows Li–S and Li–Se batteries with high capacity, stable cycling, and excellent rate performances simultaneously, and may become a new pathway toward the large‐scale and cost‐effective applications of future Li metal batteries.
doi_str_mv 10.1002/adma.202000302
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2398164219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2411063115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4782-49df9e706fefd56f3083f30a4297233e912540cfddf1459b1b03b164c3f9ba453</originalsourceid><addsrcrecordid>eNqFkc1O3DAURi1UBFNg22VlqZtuMlz_JDNeTqdTQApCQrCOnOQ6Y5TE1E6EZscjVOob8iR4GKBSN8jStXR17ll8HyFfGEwZAD_VdaenHDgACOB7ZMJSzhIJKv1EJqBEmqhMzg_J5xDuIqMyyA7IoeAii49NiF3Qaz1Y1-uWXmPlemOb0b9sqDN01WI1eNduBqTGeXpum_XT459Vj77ZUN3XNHd9Eze5NUhzO6zt2D09_l2udVu5Bnv6Qw8DeovhmOwb3QY8ef2PyO2v1c3yPMmvzi6Wizyp5GzOE6lqo3AGmUFTp5kRMBdxaMnVjAuBivFUQmXq2jCZqpKVIEqWyUoYVWqZiiPyfee99-73iGEoOhsqbFvdoxtDwYWaR54zFdFv_6F3bvQxikhJxiAmxLbC6Y6qvAvBoynuve203xQMim0JxbaE4r2EePD1VTuWHdbv-FvqEVA74MG2uPlAVyx-Xi7-yZ8BHDeVJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2411063115</pqid></control><display><type>article</type><title>A Rational Reconfiguration of Electrolyte for High‐Energy and Long‐Life Lithium–Chalcogen Batteries</title><source>Access via Wiley Online Library</source><creator>Wang, Wen‐Peng ; Zhang, Juan ; Yin, Ya‐Xia ; Duan, Hui ; Chou, Jia ; Li, Sheng‐Yi ; Yan, Min ; Xin, Sen ; Guo, Yu‐Guo</creator><creatorcontrib>Wang, Wen‐Peng ; Zhang, Juan ; Yin, Ya‐Xia ; Duan, Hui ; Chou, Jia ; Li, Sheng‐Yi ; Yan, Min ; Xin, Sen ; Guo, Yu‐Guo</creatorcontrib><description>Lithium–chalcogen batteries are an appealing choice for high‐energy‐storage technology. However, the traditional battery that employs liquid electrolytes suffers irreversible loss and shuttle of the soluble intermediates. New batteries that adopt Li+‐conductive polymer electrolytes to mitigate the shuttle problem are hindered by incomplete discharge of sulfur/selenium. To address the trade‐off between energy and cycle life, a new electrolyte is proposed that reconciles the merits of liquid and polymer electrolytes while resolving each of their inferiorities. An in situ interfacial polymerization strategy is developed to create a liquid/polymer hybrid electrolyte between a LiPF6‐coated separator and the cathode. A polymer‐gel electrolyte in situ formed on the separator shows high Li+ transfer number to serve as a chemical barrier against the shuttle effect. Between the gel electrolyte and the cathode surface is a thin gradient solidification layer that enables transformation from gel to liquid so that the liquid electrolyte is maintained inside the cathode for rapid Li+ transport and high utilization of active materials. By addressing the dilemma between the shuttle chemistry and incomplete discharge of S/Se, the new electrolyte configuration demonstrates its feasibility to trigger higher capacity retention of the cathodes. As a result, Li–S and Li–Se cells with high energy and long cycle lives are realized, showing promise for practical use. The rational reconfiguration of an electrolyte enabled by an in situ interfacial polymerization strategy is demonstrated. This strategy endows Li–S and Li–Se batteries with high capacity, stable cycling, and excellent rate performances simultaneously, and may become a new pathway toward the large‐scale and cost‐effective applications of future Li metal batteries.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202000302</identifier><identifier>PMID: 32363631</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; Conducting polymers ; Discharge ; Electrolytes ; Electrolytic cells ; Energy storage ; functional composite separators ; hybrid electrolytes ; in situ interfacial polymerization ; Lithium ; lithium–selenium batteries ; lithium–sulfur batteries ; Materials science ; Polymers ; Reconfiguration ; Selenium ; Separators ; Solidification ; Storage batteries</subject><ispartof>Advanced materials (Weinheim), 2020-06, Vol.32 (23), p.e2000302-n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4782-49df9e706fefd56f3083f30a4297233e912540cfddf1459b1b03b164c3f9ba453</citedby><cites>FETCH-LOGICAL-c4782-49df9e706fefd56f3083f30a4297233e912540cfddf1459b1b03b164c3f9ba453</cites><orcidid>0000-0003-0322-8476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202000302$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202000302$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32363631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Wen‐Peng</creatorcontrib><creatorcontrib>Zhang, Juan</creatorcontrib><creatorcontrib>Yin, Ya‐Xia</creatorcontrib><creatorcontrib>Duan, Hui</creatorcontrib><creatorcontrib>Chou, Jia</creatorcontrib><creatorcontrib>Li, Sheng‐Yi</creatorcontrib><creatorcontrib>Yan, Min</creatorcontrib><creatorcontrib>Xin, Sen</creatorcontrib><creatorcontrib>Guo, Yu‐Guo</creatorcontrib><title>A Rational Reconfiguration of Electrolyte for High‐Energy and Long‐Life Lithium–Chalcogen Batteries</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Lithium–chalcogen batteries are an appealing choice for high‐energy‐storage technology. However, the traditional battery that employs liquid electrolytes suffers irreversible loss and shuttle of the soluble intermediates. New batteries that adopt Li+‐conductive polymer electrolytes to mitigate the shuttle problem are hindered by incomplete discharge of sulfur/selenium. To address the trade‐off between energy and cycle life, a new electrolyte is proposed that reconciles the merits of liquid and polymer electrolytes while resolving each of their inferiorities. An in situ interfacial polymerization strategy is developed to create a liquid/polymer hybrid electrolyte between a LiPF6‐coated separator and the cathode. A polymer‐gel electrolyte in situ formed on the separator shows high Li+ transfer number to serve as a chemical barrier against the shuttle effect. Between the gel electrolyte and the cathode surface is a thin gradient solidification layer that enables transformation from gel to liquid so that the liquid electrolyte is maintained inside the cathode for rapid Li+ transport and high utilization of active materials. By addressing the dilemma between the shuttle chemistry and incomplete discharge of S/Se, the new electrolyte configuration demonstrates its feasibility to trigger higher capacity retention of the cathodes. As a result, Li–S and Li–Se cells with high energy and long cycle lives are realized, showing promise for practical use. The rational reconfiguration of an electrolyte enabled by an in situ interfacial polymerization strategy is demonstrated. This strategy endows Li–S and Li–Se batteries with high capacity, stable cycling, and excellent rate performances simultaneously, and may become a new pathway toward the large‐scale and cost‐effective applications of future Li metal batteries.</description><subject>Cathodes</subject><subject>Conducting polymers</subject><subject>Discharge</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Energy storage</subject><subject>functional composite separators</subject><subject>hybrid electrolytes</subject><subject>in situ interfacial polymerization</subject><subject>Lithium</subject><subject>lithium–selenium batteries</subject><subject>lithium–sulfur batteries</subject><subject>Materials science</subject><subject>Polymers</subject><subject>Reconfiguration</subject><subject>Selenium</subject><subject>Separators</subject><subject>Solidification</subject><subject>Storage batteries</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkc1O3DAURi1UBFNg22VlqZtuMlz_JDNeTqdTQApCQrCOnOQ6Y5TE1E6EZscjVOob8iR4GKBSN8jStXR17ll8HyFfGEwZAD_VdaenHDgACOB7ZMJSzhIJKv1EJqBEmqhMzg_J5xDuIqMyyA7IoeAii49NiF3Qaz1Y1-uWXmPlemOb0b9sqDN01WI1eNduBqTGeXpum_XT459Vj77ZUN3XNHd9Eze5NUhzO6zt2D09_l2udVu5Bnv6Qw8DeovhmOwb3QY8ef2PyO2v1c3yPMmvzi6Wizyp5GzOE6lqo3AGmUFTp5kRMBdxaMnVjAuBivFUQmXq2jCZqpKVIEqWyUoYVWqZiiPyfee99-73iGEoOhsqbFvdoxtDwYWaR54zFdFv_6F3bvQxikhJxiAmxLbC6Y6qvAvBoynuve203xQMim0JxbaE4r2EePD1VTuWHdbv-FvqEVA74MG2uPlAVyx-Xi7-yZ8BHDeVJw</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Wang, Wen‐Peng</creator><creator>Zhang, Juan</creator><creator>Yin, Ya‐Xia</creator><creator>Duan, Hui</creator><creator>Chou, Jia</creator><creator>Li, Sheng‐Yi</creator><creator>Yan, Min</creator><creator>Xin, Sen</creator><creator>Guo, Yu‐Guo</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0322-8476</orcidid></search><sort><creationdate>20200601</creationdate><title>A Rational Reconfiguration of Electrolyte for High‐Energy and Long‐Life Lithium–Chalcogen Batteries</title><author>Wang, Wen‐Peng ; Zhang, Juan ; Yin, Ya‐Xia ; Duan, Hui ; Chou, Jia ; Li, Sheng‐Yi ; Yan, Min ; Xin, Sen ; Guo, Yu‐Guo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4782-49df9e706fefd56f3083f30a4297233e912540cfddf1459b1b03b164c3f9ba453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cathodes</topic><topic>Conducting polymers</topic><topic>Discharge</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Energy storage</topic><topic>functional composite separators</topic><topic>hybrid electrolytes</topic><topic>in situ interfacial polymerization</topic><topic>Lithium</topic><topic>lithium–selenium batteries</topic><topic>lithium–sulfur batteries</topic><topic>Materials science</topic><topic>Polymers</topic><topic>Reconfiguration</topic><topic>Selenium</topic><topic>Separators</topic><topic>Solidification</topic><topic>Storage batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wen‐Peng</creatorcontrib><creatorcontrib>Zhang, Juan</creatorcontrib><creatorcontrib>Yin, Ya‐Xia</creatorcontrib><creatorcontrib>Duan, Hui</creatorcontrib><creatorcontrib>Chou, Jia</creatorcontrib><creatorcontrib>Li, Sheng‐Yi</creatorcontrib><creatorcontrib>Yan, Min</creatorcontrib><creatorcontrib>Xin, Sen</creatorcontrib><creatorcontrib>Guo, Yu‐Guo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wen‐Peng</au><au>Zhang, Juan</au><au>Yin, Ya‐Xia</au><au>Duan, Hui</au><au>Chou, Jia</au><au>Li, Sheng‐Yi</au><au>Yan, Min</au><au>Xin, Sen</au><au>Guo, Yu‐Guo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Rational Reconfiguration of Electrolyte for High‐Energy and Long‐Life Lithium–Chalcogen Batteries</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>32</volume><issue>23</issue><spage>e2000302</spage><epage>n/a</epage><pages>e2000302-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Lithium–chalcogen batteries are an appealing choice for high‐energy‐storage technology. However, the traditional battery that employs liquid electrolytes suffers irreversible loss and shuttle of the soluble intermediates. New batteries that adopt Li+‐conductive polymer electrolytes to mitigate the shuttle problem are hindered by incomplete discharge of sulfur/selenium. To address the trade‐off between energy and cycle life, a new electrolyte is proposed that reconciles the merits of liquid and polymer electrolytes while resolving each of their inferiorities. An in situ interfacial polymerization strategy is developed to create a liquid/polymer hybrid electrolyte between a LiPF6‐coated separator and the cathode. A polymer‐gel electrolyte in situ formed on the separator shows high Li+ transfer number to serve as a chemical barrier against the shuttle effect. Between the gel electrolyte and the cathode surface is a thin gradient solidification layer that enables transformation from gel to liquid so that the liquid electrolyte is maintained inside the cathode for rapid Li+ transport and high utilization of active materials. By addressing the dilemma between the shuttle chemistry and incomplete discharge of S/Se, the new electrolyte configuration demonstrates its feasibility to trigger higher capacity retention of the cathodes. As a result, Li–S and Li–Se cells with high energy and long cycle lives are realized, showing promise for practical use. The rational reconfiguration of an electrolyte enabled by an in situ interfacial polymerization strategy is demonstrated. This strategy endows Li–S and Li–Se batteries with high capacity, stable cycling, and excellent rate performances simultaneously, and may become a new pathway toward the large‐scale and cost‐effective applications of future Li metal batteries.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32363631</pmid><doi>10.1002/adma.202000302</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0322-8476</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2020-06, Vol.32 (23), p.e2000302-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2398164219
source Access via Wiley Online Library
subjects Cathodes
Conducting polymers
Discharge
Electrolytes
Electrolytic cells
Energy storage
functional composite separators
hybrid electrolytes
in situ interfacial polymerization
Lithium
lithium–selenium batteries
lithium–sulfur batteries
Materials science
Polymers
Reconfiguration
Selenium
Separators
Solidification
Storage batteries
title A Rational Reconfiguration of Electrolyte for High‐Energy and Long‐Life Lithium–Chalcogen Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A04%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Rational%20Reconfiguration%20of%20Electrolyte%20for%20High%E2%80%90Energy%20and%20Long%E2%80%90Life%20Lithium%E2%80%93Chalcogen%20Batteries&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wang,%20Wen%E2%80%90Peng&rft.date=2020-06-01&rft.volume=32&rft.issue=23&rft.spage=e2000302&rft.epage=n/a&rft.pages=e2000302-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202000302&rft_dat=%3Cproquest_cross%3E2411063115%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2411063115&rft_id=info:pmid/32363631&rfr_iscdi=true