Ultrafast Spectroscopy of Lipid–Water Interfaces: Transmembrane Crowding Drives H‑Bond Dynamics

Biology takes place in crowded, heterogeneous environments, and it is therefore essential to account for crowding effects in our understanding of biophysical processes at the molecular level. Comparable to the cytosol, proteins occupy approximately 30% of the plasma membrane surface; thus, crowding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2020-05, Vol.11 (10), p.4093-4098
Hauptverfasser: Flanagan, Jennifer C, Cardenas, Alfredo E, Baiz, Carlos R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4098
container_issue 10
container_start_page 4093
container_title The journal of physical chemistry letters
container_volume 11
creator Flanagan, Jennifer C
Cardenas, Alfredo E
Baiz, Carlos R
description Biology takes place in crowded, heterogeneous environments, and it is therefore essential to account for crowding effects in our understanding of biophysical processes at the molecular level. Comparable to the cytosol, proteins occupy approximately 30% of the plasma membrane surface; thus, crowding should have an effect on the local structure and dynamics at the lipid–water interface. Using a combination of ultrafast two-dimensional infrared spectroscopy and molecular dynamics simulations, we quantify the effects of membrane peptide concentration on the picosecond interfacial H-bond dynamics. The measurements reveal a nonmonotonic dependence of water orientation and dynamics as a function of transmembrane peptide:lipid ratio. We observe three dynamical regimes: a “pure lipid-like” regime at low peptide concentrations, a bulk-like region at intermediate peptide concentrations where dynamics are faster by ∼20% compared to those of the pure lipid bilayer, and a crowded regime where high peptide concentrations slow dynamics by ∼50%.
doi_str_mv 10.1021/acs.jpclett.0c00783
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2398156447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398156447</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-c3b40291570e6efe7febc2928a1f32e9057ac2b2129d9e75454fc503ed0cde593</originalsourceid><addsrcrecordid>eNp9kMtOAjEUhhujEUSfwMR06QboZcpM3SmokJC4EOJy0umcmiFzs53RsOMVjG_Ik1gFjSs35z-L_z-XD6FzSgaUMDpU2g1Wtc6haQZEExJG_AB1qQyifkgjcfin76AT51aEjCSJwmPU4YyPAh6JLtLLvLHKKNfgxxp0Yyunq3qNK4PnWZ2l283Hk2rA4lnpq1Ea3BVeWFW6AorEK-Cxrd7SrHzGE5u9gsPT7eb9pipTPFmXqsi0O0VHRuUOzvbaQ8u728V42p8_3M_G1_O-4oFo-ponAWGSipDACAyEBhLNJIsUNZyBJCJUmiWMMplKCEUgAqMF4ZASnYKQvIcud3NrW7204Jq4yJyGPPdXVq2LGZcRFaMgCL2V76zaP-wsmLi2WaHsOqYk_qIbe7rxnm68p-tTF_sFbVJA-pv5wekNw53hO121tvT__jvyE4I2jBY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398156447</pqid></control><display><type>article</type><title>Ultrafast Spectroscopy of Lipid–Water Interfaces: Transmembrane Crowding Drives H‑Bond Dynamics</title><source>American Chemical Society Journals</source><creator>Flanagan, Jennifer C ; Cardenas, Alfredo E ; Baiz, Carlos R</creator><creatorcontrib>Flanagan, Jennifer C ; Cardenas, Alfredo E ; Baiz, Carlos R</creatorcontrib><description>Biology takes place in crowded, heterogeneous environments, and it is therefore essential to account for crowding effects in our understanding of biophysical processes at the molecular level. Comparable to the cytosol, proteins occupy approximately 30% of the plasma membrane surface; thus, crowding should have an effect on the local structure and dynamics at the lipid–water interface. Using a combination of ultrafast two-dimensional infrared spectroscopy and molecular dynamics simulations, we quantify the effects of membrane peptide concentration on the picosecond interfacial H-bond dynamics. The measurements reveal a nonmonotonic dependence of water orientation and dynamics as a function of transmembrane peptide:lipid ratio. We observe three dynamical regimes: a “pure lipid-like” regime at low peptide concentrations, a bulk-like region at intermediate peptide concentrations where dynamics are faster by ∼20% compared to those of the pure lipid bilayer, and a crowded regime where high peptide concentrations slow dynamics by ∼50%.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.0c00783</identifier><identifier>PMID: 32364385</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry letters, 2020-05, Vol.11 (10), p.4093-4098</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a345t-c3b40291570e6efe7febc2928a1f32e9057ac2b2129d9e75454fc503ed0cde593</citedby><cites>FETCH-LOGICAL-a345t-c3b40291570e6efe7febc2928a1f32e9057ac2b2129d9e75454fc503ed0cde593</cites><orcidid>0000-0003-0699-8468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.0c00783$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.0c00783$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32364385$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Flanagan, Jennifer C</creatorcontrib><creatorcontrib>Cardenas, Alfredo E</creatorcontrib><creatorcontrib>Baiz, Carlos R</creatorcontrib><title>Ultrafast Spectroscopy of Lipid–Water Interfaces: Transmembrane Crowding Drives H‑Bond Dynamics</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Biology takes place in crowded, heterogeneous environments, and it is therefore essential to account for crowding effects in our understanding of biophysical processes at the molecular level. Comparable to the cytosol, proteins occupy approximately 30% of the plasma membrane surface; thus, crowding should have an effect on the local structure and dynamics at the lipid–water interface. Using a combination of ultrafast two-dimensional infrared spectroscopy and molecular dynamics simulations, we quantify the effects of membrane peptide concentration on the picosecond interfacial H-bond dynamics. The measurements reveal a nonmonotonic dependence of water orientation and dynamics as a function of transmembrane peptide:lipid ratio. We observe three dynamical regimes: a “pure lipid-like” regime at low peptide concentrations, a bulk-like region at intermediate peptide concentrations where dynamics are faster by ∼20% compared to those of the pure lipid bilayer, and a crowded regime where high peptide concentrations slow dynamics by ∼50%.</description><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOAjEUhhujEUSfwMR06QboZcpM3SmokJC4EOJy0umcmiFzs53RsOMVjG_Ik1gFjSs35z-L_z-XD6FzSgaUMDpU2g1Wtc6haQZEExJG_AB1qQyifkgjcfin76AT51aEjCSJwmPU4YyPAh6JLtLLvLHKKNfgxxp0Yyunq3qNK4PnWZ2l283Hk2rA4lnpq1Ea3BVeWFW6AorEK-Cxrd7SrHzGE5u9gsPT7eb9pipTPFmXqsi0O0VHRuUOzvbaQ8u728V42p8_3M_G1_O-4oFo-ponAWGSipDACAyEBhLNJIsUNZyBJCJUmiWMMplKCEUgAqMF4ZASnYKQvIcud3NrW7204Jq4yJyGPPdXVq2LGZcRFaMgCL2V76zaP-wsmLi2WaHsOqYk_qIbe7rxnm68p-tTF_sFbVJA-pv5wekNw53hO121tvT__jvyE4I2jBY</recordid><startdate>20200521</startdate><enddate>20200521</enddate><creator>Flanagan, Jennifer C</creator><creator>Cardenas, Alfredo E</creator><creator>Baiz, Carlos R</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0699-8468</orcidid></search><sort><creationdate>20200521</creationdate><title>Ultrafast Spectroscopy of Lipid–Water Interfaces: Transmembrane Crowding Drives H‑Bond Dynamics</title><author>Flanagan, Jennifer C ; Cardenas, Alfredo E ; Baiz, Carlos R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-c3b40291570e6efe7febc2928a1f32e9057ac2b2129d9e75454fc503ed0cde593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flanagan, Jennifer C</creatorcontrib><creatorcontrib>Cardenas, Alfredo E</creatorcontrib><creatorcontrib>Baiz, Carlos R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flanagan, Jennifer C</au><au>Cardenas, Alfredo E</au><au>Baiz, Carlos R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast Spectroscopy of Lipid–Water Interfaces: Transmembrane Crowding Drives H‑Bond Dynamics</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2020-05-21</date><risdate>2020</risdate><volume>11</volume><issue>10</issue><spage>4093</spage><epage>4098</epage><pages>4093-4098</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Biology takes place in crowded, heterogeneous environments, and it is therefore essential to account for crowding effects in our understanding of biophysical processes at the molecular level. Comparable to the cytosol, proteins occupy approximately 30% of the plasma membrane surface; thus, crowding should have an effect on the local structure and dynamics at the lipid–water interface. Using a combination of ultrafast two-dimensional infrared spectroscopy and molecular dynamics simulations, we quantify the effects of membrane peptide concentration on the picosecond interfacial H-bond dynamics. The measurements reveal a nonmonotonic dependence of water orientation and dynamics as a function of transmembrane peptide:lipid ratio. We observe three dynamical regimes: a “pure lipid-like” regime at low peptide concentrations, a bulk-like region at intermediate peptide concentrations where dynamics are faster by ∼20% compared to those of the pure lipid bilayer, and a crowded regime where high peptide concentrations slow dynamics by ∼50%.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32364385</pmid><doi>10.1021/acs.jpclett.0c00783</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0699-8468</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2020-05, Vol.11 (10), p.4093-4098
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_2398156447
source American Chemical Society Journals
title Ultrafast Spectroscopy of Lipid–Water Interfaces: Transmembrane Crowding Drives H‑Bond Dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A31%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20Spectroscopy%20of%20Lipid%E2%80%93Water%20Interfaces:%20Transmembrane%20Crowding%20Drives%20H%E2%80%91Bond%20Dynamics&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Flanagan,%20Jennifer%20C&rft.date=2020-05-21&rft.volume=11&rft.issue=10&rft.spage=4093&rft.epage=4098&rft.pages=4093-4098&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.0c00783&rft_dat=%3Cproquest_cross%3E2398156447%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398156447&rft_id=info:pmid/32364385&rfr_iscdi=true