Time‐Resolved Fluorescence Anisotropy of a Molecular Rotor Resolves Microscopic Viscosity Parameters in Complex Environments
Understanding viscosity in complex environments remains a largely unanswered question despite its importance in determining reaction rates in vivo. Here, time‐resolved fluorescence anisotropy imaging (TR‐FAIM) is combined with fluorescent molecular rotors (FMRs) to simultaneously determine two non‐e...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2020-06, Vol.16 (22), p.e1907139-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 22 |
container_start_page | e1907139 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 16 |
creator | Steinmark, I. Emilie Chung, Pei‐Hua Ziolek, Robert M. Cornell, Bethan Smith, Paul Levitt, James A. Tregidgo, Carolyn Molteni, Carla Yahioglu, Gokhan Lorenz, Christian D. Suhling, Klaus |
description | Understanding viscosity in complex environments remains a largely unanswered question despite its importance in determining reaction rates in vivo. Here, time‐resolved fluorescence anisotropy imaging (TR‐FAIM) is combined with fluorescent molecular rotors (FMRs) to simultaneously determine two non‐equivalent viscosity‐related parameters in complex heterogeneous environments. The parameters, FMR rotational correlation time and lifetime, are extracted from fluorescence anisotropy decays, which in heterogeneous environments show dip‐and‐rise behavior due to multiple dye populations. Decays of this kind are found both in artificially constructed adiposomes and in live cell lipid droplet organelles. Molecular dynamics simulations are used to assign each population to nano‐environments within the lipid systems. The less viscous population corresponds to the state showing an average 25° tilt to the lipid membrane normal, and the more viscous population to the state showing an average 55° tilt. This combined experimental and simulation approach enables a comprehensive description of the FMR probe behavior within viscous nano‐environments in complex, biological systems.
Fluorescent molecular rotors (FMRs, viscosity‐dependent fluorescence lifetime probes) are combined with time‐resolved fluorescence anisotropy imaging for novel multiplex viscosity imaging in model and live cell lipid droplets. All‐atom molecular dynamics simulations identify two FMR tilt states which are connected to extracted viscosity parameters, namely FMR lifetime and rotational correlation time. |
doi_str_mv | 10.1002/smll.201907139 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2398154276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398154276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4799-46bc0da8de6d30d533c7a9d23f5b59f3f27b10613026188859d27265aecb0fc33</originalsourceid><addsrcrecordid>eNqFkU1P3DAQhi1EVb565VhZ4sJlt_5I4viIVkCRdkUFtFfLcSaSkRMHO1nYC-In9DfyS_BqYStx6WVmpHnm1Tt6ETqmZEoJYT9i69yUESqJoFzuoH1aUD4pSiZ3tzMle-ggxntCOGWZ-Ir2OOMFFxnbR893toXXl783EL1bQo0v3OgDRAOdAXzW2eiH4PsV9g3WeOEdmNHpgG_84FPdXEW8sCb4aHxvDf5j0xDtsMK_dNAtDBAith2e-bZ38ITPu6UNvmuhG-IR-tJoF-Hbez9Evy_O72Y_J_Pry6vZ2XxiMiHlJCsqQ2pd1lDUnNQ550ZoWTPe5FUuG94wUVGSviWsoGVZ5mknWJFrMBVpDOeH6HSj2wf_MEIcVJtcgnO6Az9GxbgsaZ4xUST05BN678fQJXeKZUTSMiMiT9R0Q63_jgEa1Qfb6rBSlKh1MmqdjNomkw6-v8uOVQv1Fv-IIgFyAzxaB6v_yKnbxXz-T_wNBKedaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409184075</pqid></control><display><type>article</type><title>Time‐Resolved Fluorescence Anisotropy of a Molecular Rotor Resolves Microscopic Viscosity Parameters in Complex Environments</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Steinmark, I. Emilie ; Chung, Pei‐Hua ; Ziolek, Robert M. ; Cornell, Bethan ; Smith, Paul ; Levitt, James A. ; Tregidgo, Carolyn ; Molteni, Carla ; Yahioglu, Gokhan ; Lorenz, Christian D. ; Suhling, Klaus</creator><creatorcontrib>Steinmark, I. Emilie ; Chung, Pei‐Hua ; Ziolek, Robert M. ; Cornell, Bethan ; Smith, Paul ; Levitt, James A. ; Tregidgo, Carolyn ; Molteni, Carla ; Yahioglu, Gokhan ; Lorenz, Christian D. ; Suhling, Klaus</creatorcontrib><description>Understanding viscosity in complex environments remains a largely unanswered question despite its importance in determining reaction rates in vivo. Here, time‐resolved fluorescence anisotropy imaging (TR‐FAIM) is combined with fluorescent molecular rotors (FMRs) to simultaneously determine two non‐equivalent viscosity‐related parameters in complex heterogeneous environments. The parameters, FMR rotational correlation time and lifetime, are extracted from fluorescence anisotropy decays, which in heterogeneous environments show dip‐and‐rise behavior due to multiple dye populations. Decays of this kind are found both in artificially constructed adiposomes and in live cell lipid droplet organelles. Molecular dynamics simulations are used to assign each population to nano‐environments within the lipid systems. The less viscous population corresponds to the state showing an average 25° tilt to the lipid membrane normal, and the more viscous population to the state showing an average 55° tilt. This combined experimental and simulation approach enables a comprehensive description of the FMR probe behavior within viscous nano‐environments in complex, biological systems.
Fluorescent molecular rotors (FMRs, viscosity‐dependent fluorescence lifetime probes) are combined with time‐resolved fluorescence anisotropy imaging for novel multiplex viscosity imaging in model and live cell lipid droplets. All‐atom molecular dynamics simulations identify two FMR tilt states which are connected to extracted viscosity parameters, namely FMR lifetime and rotational correlation time.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201907139</identifier><identifier>PMID: 32363742</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anisotropy ; Fluorescence ; Fluorescence Polarization ; Fluorescent Dyes ; In vivo methods and tests ; lipid droplets ; Lipids ; Molecular dynamics ; molecular dynamics simulations ; molecular rotors ; Nanotechnology ; Optical Imaging ; Organelles ; Parameters ; time‐resolved fluorescence anisotropy ; Viscosity ; viscosity imaging time‐correlated single photon counting (TCSPC)</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2020-06, Vol.16 (22), p.e1907139-n/a</ispartof><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4799-46bc0da8de6d30d533c7a9d23f5b59f3f27b10613026188859d27265aecb0fc33</citedby><cites>FETCH-LOGICAL-c4799-46bc0da8de6d30d533c7a9d23f5b59f3f27b10613026188859d27265aecb0fc33</cites><orcidid>0000-0003-4011-9658 ; 0000-0002-0402-2376 ; 0000-0001-8797-5430 ; 0000-0003-4043-4914</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201907139$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201907139$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32363742$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Steinmark, I. Emilie</creatorcontrib><creatorcontrib>Chung, Pei‐Hua</creatorcontrib><creatorcontrib>Ziolek, Robert M.</creatorcontrib><creatorcontrib>Cornell, Bethan</creatorcontrib><creatorcontrib>Smith, Paul</creatorcontrib><creatorcontrib>Levitt, James A.</creatorcontrib><creatorcontrib>Tregidgo, Carolyn</creatorcontrib><creatorcontrib>Molteni, Carla</creatorcontrib><creatorcontrib>Yahioglu, Gokhan</creatorcontrib><creatorcontrib>Lorenz, Christian D.</creatorcontrib><creatorcontrib>Suhling, Klaus</creatorcontrib><title>Time‐Resolved Fluorescence Anisotropy of a Molecular Rotor Resolves Microscopic Viscosity Parameters in Complex Environments</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Understanding viscosity in complex environments remains a largely unanswered question despite its importance in determining reaction rates in vivo. Here, time‐resolved fluorescence anisotropy imaging (TR‐FAIM) is combined with fluorescent molecular rotors (FMRs) to simultaneously determine two non‐equivalent viscosity‐related parameters in complex heterogeneous environments. The parameters, FMR rotational correlation time and lifetime, are extracted from fluorescence anisotropy decays, which in heterogeneous environments show dip‐and‐rise behavior due to multiple dye populations. Decays of this kind are found both in artificially constructed adiposomes and in live cell lipid droplet organelles. Molecular dynamics simulations are used to assign each population to nano‐environments within the lipid systems. The less viscous population corresponds to the state showing an average 25° tilt to the lipid membrane normal, and the more viscous population to the state showing an average 55° tilt. This combined experimental and simulation approach enables a comprehensive description of the FMR probe behavior within viscous nano‐environments in complex, biological systems.
Fluorescent molecular rotors (FMRs, viscosity‐dependent fluorescence lifetime probes) are combined with time‐resolved fluorescence anisotropy imaging for novel multiplex viscosity imaging in model and live cell lipid droplets. All‐atom molecular dynamics simulations identify two FMR tilt states which are connected to extracted viscosity parameters, namely FMR lifetime and rotational correlation time.</description><subject>Anisotropy</subject><subject>Fluorescence</subject><subject>Fluorescence Polarization</subject><subject>Fluorescent Dyes</subject><subject>In vivo methods and tests</subject><subject>lipid droplets</subject><subject>Lipids</subject><subject>Molecular dynamics</subject><subject>molecular dynamics simulations</subject><subject>molecular rotors</subject><subject>Nanotechnology</subject><subject>Optical Imaging</subject><subject>Organelles</subject><subject>Parameters</subject><subject>time‐resolved fluorescence anisotropy</subject><subject>Viscosity</subject><subject>viscosity imaging time‐correlated single photon counting (TCSPC)</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU1P3DAQhi1EVb565VhZ4sJlt_5I4viIVkCRdkUFtFfLcSaSkRMHO1nYC-In9DfyS_BqYStx6WVmpHnm1Tt6ETqmZEoJYT9i69yUESqJoFzuoH1aUD4pSiZ3tzMle-ggxntCOGWZ-Ir2OOMFFxnbR893toXXl783EL1bQo0v3OgDRAOdAXzW2eiH4PsV9g3WeOEdmNHpgG_84FPdXEW8sCb4aHxvDf5j0xDtsMK_dNAtDBAith2e-bZ38ITPu6UNvmuhG-IR-tJoF-Hbez9Evy_O72Y_J_Pry6vZ2XxiMiHlJCsqQ2pd1lDUnNQ550ZoWTPe5FUuG94wUVGSviWsoGVZ5mknWJFrMBVpDOeH6HSj2wf_MEIcVJtcgnO6Az9GxbgsaZ4xUST05BN678fQJXeKZUTSMiMiT9R0Q63_jgEa1Qfb6rBSlKh1MmqdjNomkw6-v8uOVQv1Fv-IIgFyAzxaB6v_yKnbxXz-T_wNBKedaw</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Steinmark, I. Emilie</creator><creator>Chung, Pei‐Hua</creator><creator>Ziolek, Robert M.</creator><creator>Cornell, Bethan</creator><creator>Smith, Paul</creator><creator>Levitt, James A.</creator><creator>Tregidgo, Carolyn</creator><creator>Molteni, Carla</creator><creator>Yahioglu, Gokhan</creator><creator>Lorenz, Christian D.</creator><creator>Suhling, Klaus</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4011-9658</orcidid><orcidid>https://orcid.org/0000-0002-0402-2376</orcidid><orcidid>https://orcid.org/0000-0001-8797-5430</orcidid><orcidid>https://orcid.org/0000-0003-4043-4914</orcidid></search><sort><creationdate>20200601</creationdate><title>Time‐Resolved Fluorescence Anisotropy of a Molecular Rotor Resolves Microscopic Viscosity Parameters in Complex Environments</title><author>Steinmark, I. Emilie ; Chung, Pei‐Hua ; Ziolek, Robert M. ; Cornell, Bethan ; Smith, Paul ; Levitt, James A. ; Tregidgo, Carolyn ; Molteni, Carla ; Yahioglu, Gokhan ; Lorenz, Christian D. ; Suhling, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4799-46bc0da8de6d30d533c7a9d23f5b59f3f27b10613026188859d27265aecb0fc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>Fluorescence</topic><topic>Fluorescence Polarization</topic><topic>Fluorescent Dyes</topic><topic>In vivo methods and tests</topic><topic>lipid droplets</topic><topic>Lipids</topic><topic>Molecular dynamics</topic><topic>molecular dynamics simulations</topic><topic>molecular rotors</topic><topic>Nanotechnology</topic><topic>Optical Imaging</topic><topic>Organelles</topic><topic>Parameters</topic><topic>time‐resolved fluorescence anisotropy</topic><topic>Viscosity</topic><topic>viscosity imaging time‐correlated single photon counting (TCSPC)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steinmark, I. Emilie</creatorcontrib><creatorcontrib>Chung, Pei‐Hua</creatorcontrib><creatorcontrib>Ziolek, Robert M.</creatorcontrib><creatorcontrib>Cornell, Bethan</creatorcontrib><creatorcontrib>Smith, Paul</creatorcontrib><creatorcontrib>Levitt, James A.</creatorcontrib><creatorcontrib>Tregidgo, Carolyn</creatorcontrib><creatorcontrib>Molteni, Carla</creatorcontrib><creatorcontrib>Yahioglu, Gokhan</creatorcontrib><creatorcontrib>Lorenz, Christian D.</creatorcontrib><creatorcontrib>Suhling, Klaus</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steinmark, I. Emilie</au><au>Chung, Pei‐Hua</au><au>Ziolek, Robert M.</au><au>Cornell, Bethan</au><au>Smith, Paul</au><au>Levitt, James A.</au><au>Tregidgo, Carolyn</au><au>Molteni, Carla</au><au>Yahioglu, Gokhan</au><au>Lorenz, Christian D.</au><au>Suhling, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time‐Resolved Fluorescence Anisotropy of a Molecular Rotor Resolves Microscopic Viscosity Parameters in Complex Environments</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>16</volume><issue>22</issue><spage>e1907139</spage><epage>n/a</epage><pages>e1907139-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Understanding viscosity in complex environments remains a largely unanswered question despite its importance in determining reaction rates in vivo. Here, time‐resolved fluorescence anisotropy imaging (TR‐FAIM) is combined with fluorescent molecular rotors (FMRs) to simultaneously determine two non‐equivalent viscosity‐related parameters in complex heterogeneous environments. The parameters, FMR rotational correlation time and lifetime, are extracted from fluorescence anisotropy decays, which in heterogeneous environments show dip‐and‐rise behavior due to multiple dye populations. Decays of this kind are found both in artificially constructed adiposomes and in live cell lipid droplet organelles. Molecular dynamics simulations are used to assign each population to nano‐environments within the lipid systems. The less viscous population corresponds to the state showing an average 25° tilt to the lipid membrane normal, and the more viscous population to the state showing an average 55° tilt. This combined experimental and simulation approach enables a comprehensive description of the FMR probe behavior within viscous nano‐environments in complex, biological systems.
Fluorescent molecular rotors (FMRs, viscosity‐dependent fluorescence lifetime probes) are combined with time‐resolved fluorescence anisotropy imaging for novel multiplex viscosity imaging in model and live cell lipid droplets. All‐atom molecular dynamics simulations identify two FMR tilt states which are connected to extracted viscosity parameters, namely FMR lifetime and rotational correlation time.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32363742</pmid><doi>10.1002/smll.201907139</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4011-9658</orcidid><orcidid>https://orcid.org/0000-0002-0402-2376</orcidid><orcidid>https://orcid.org/0000-0001-8797-5430</orcidid><orcidid>https://orcid.org/0000-0003-4043-4914</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2020-06, Vol.16 (22), p.e1907139-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2398154276 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Anisotropy Fluorescence Fluorescence Polarization Fluorescent Dyes In vivo methods and tests lipid droplets Lipids Molecular dynamics molecular dynamics simulations molecular rotors Nanotechnology Optical Imaging Organelles Parameters time‐resolved fluorescence anisotropy Viscosity viscosity imaging time‐correlated single photon counting (TCSPC) |
title | Time‐Resolved Fluorescence Anisotropy of a Molecular Rotor Resolves Microscopic Viscosity Parameters in Complex Environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A59%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%E2%80%90Resolved%20Fluorescence%20Anisotropy%20of%20a%20Molecular%20Rotor%20Resolves%20Microscopic%20Viscosity%20Parameters%20in%20Complex%20Environments&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Steinmark,%20I.%20Emilie&rft.date=2020-06-01&rft.volume=16&rft.issue=22&rft.spage=e1907139&rft.epage=n/a&rft.pages=e1907139-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201907139&rft_dat=%3Cproquest_cross%3E2398154276%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409184075&rft_id=info:pmid/32363742&rfr_iscdi=true |