Understanding the early stages of peptide formation during the biosynthesis of teicoplanin and related glycopeptide antibiotics

The biosynthesis of the glycopeptide antibiotics (GPAs) demonstrates the exceptional ability of nonribosomal peptide (NRP) synthesis to generate diverse and complex structures from an expanded array of amino acid precursors. Whilst the heptapeptide cores of GPAs share a conserved C terminus, includi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FEBS journal 2021-01, Vol.288 (2), p.507-529
Hauptverfasser: Kaniusaite, Milda, Tailhades, Julien, Kittilä, Tiia, Fage, Christopher D., Goode, Robert J.A., Schittenhelm, Ralf B., Cryle, Max J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 529
container_issue 2
container_start_page 507
container_title The FEBS journal
container_volume 288
creator Kaniusaite, Milda
Tailhades, Julien
Kittilä, Tiia
Fage, Christopher D.
Goode, Robert J.A.
Schittenhelm, Ralf B.
Cryle, Max J.
description The biosynthesis of the glycopeptide antibiotics (GPAs) demonstrates the exceptional ability of nonribosomal peptide (NRP) synthesis to generate diverse and complex structures from an expanded array of amino acid precursors. Whilst the heptapeptide cores of GPAs share a conserved C terminus, including the aromatic residues involved cross‐linking and that are essential for the antibiotic activity of GPAs, most structural diversity is found within the N terminus of the peptide. Furthermore, the origin of the (D)‐stereochemistry of residue 1 of all GPAs is currently unclear, despite its importance for antibiotic activity. Given these important features, we have now reconstituted modules (M) 1–4 of the NRP synthetase (NRPS) assembly lines that synthesise the clinically relevant type IV GPA teicoplanin and the related compound A40926. Our results show that important roles in amino acid modification during the NRPS‐mediated biosynthesis of GPAs can be ascribed to the actions of condensation domains present within these modules, including the incorporation of (D)‐amino acids at position 1 of the peptide. Our results also indicate that hybrid NRPS assembly lines can be generated in a facile manner by mixing NRPS proteins from different systems and that uncoupling of peptide formation due to different rates of activity seen for NRPS modules can be controlled by varying the ratio of NRPS modules. Taken together, this indicates that NRPS assembly lines function as dynamic peptide assembly lines and not static megaenzyme complexes, which has significant implications for biosynthetic redesign of these important biosynthetic systems. Reconstitution of the first four modules of the nonribosomal peptide synthetase machinery that biosynthesises clinically relevant glycopeptide antibiotics has revealed that these are dynamic megaenzyme complexes, from which hybrid assembly lines can be generated simply by mixing modules from different biosynthetic systems. Furthermore, epimerisation of the first residue in these peptide antibiotics unexpectedly occurs during peptide bond formation.
doi_str_mv 10.1111/febs.15350
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2397668571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2397668571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3930-159404ab6a70fbd07fe9127ecb39aa77f137844a8d7450129c4ace2494cb5ac73</originalsourceid><addsrcrecordid>eNp9kU1LJDEQhoO4rF978QcsAS8ijCadpNM5qvgFwh5WwVtIp6tnIz1Jm6SRPu1f3-iMHjxsXVIpnnooeBE6pOSUljrroU2nVDBBttAulbxa8Fo02589f9pBeyk9E8IEV-o72mEVE6p8d9HfR99BTNn4zvklzn8Ag4nDjMtoCQmHHo8wZtcB7kNcmeyCx90UP-DWhTT70iX3DmdwNoyD8c7j4sQRBpOhw8thLvONyfjsymJ2Nh2gb70ZEvzYvPvo8frq4fJ2cf_r5u7y_H5hmWJkQYXihJu2NpL0bUdkD4pWEmzLlDFS9pTJhnPTdJILQitlubFQccVtK4yVbB8dr71jDC8TpKxXLlkYyqUQpqQrpmRdN0LSgh59QZ_DFH25TldcNlLQqqkLdbKmbAwpRej1GN3KxFlTot9i0W-x6PdYCvxzo5zaFXSf6EcOBaBr4NUNMP9Hpa-vLn6vpf8AMNmaAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478751286</pqid></control><display><type>article</type><title>Understanding the early stages of peptide formation during the biosynthesis of teicoplanin and related glycopeptide antibiotics</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>Free Full-Text Journals in Chemistry</source><creator>Kaniusaite, Milda ; Tailhades, Julien ; Kittilä, Tiia ; Fage, Christopher D. ; Goode, Robert J.A. ; Schittenhelm, Ralf B. ; Cryle, Max J.</creator><creatorcontrib>Kaniusaite, Milda ; Tailhades, Julien ; Kittilä, Tiia ; Fage, Christopher D. ; Goode, Robert J.A. ; Schittenhelm, Ralf B. ; Cryle, Max J.</creatorcontrib><description>The biosynthesis of the glycopeptide antibiotics (GPAs) demonstrates the exceptional ability of nonribosomal peptide (NRP) synthesis to generate diverse and complex structures from an expanded array of amino acid precursors. Whilst the heptapeptide cores of GPAs share a conserved C terminus, including the aromatic residues involved cross‐linking and that are essential for the antibiotic activity of GPAs, most structural diversity is found within the N terminus of the peptide. Furthermore, the origin of the (D)‐stereochemistry of residue 1 of all GPAs is currently unclear, despite its importance for antibiotic activity. Given these important features, we have now reconstituted modules (M) 1–4 of the NRP synthetase (NRPS) assembly lines that synthesise the clinically relevant type IV GPA teicoplanin and the related compound A40926. Our results show that important roles in amino acid modification during the NRPS‐mediated biosynthesis of GPAs can be ascribed to the actions of condensation domains present within these modules, including the incorporation of (D)‐amino acids at position 1 of the peptide. Our results also indicate that hybrid NRPS assembly lines can be generated in a facile manner by mixing NRPS proteins from different systems and that uncoupling of peptide formation due to different rates of activity seen for NRPS modules can be controlled by varying the ratio of NRPS modules. Taken together, this indicates that NRPS assembly lines function as dynamic peptide assembly lines and not static megaenzyme complexes, which has significant implications for biosynthetic redesign of these important biosynthetic systems. Reconstitution of the first four modules of the nonribosomal peptide synthetase machinery that biosynthesises clinically relevant glycopeptide antibiotics has revealed that these are dynamic megaenzyme complexes, from which hybrid assembly lines can be generated simply by mixing modules from different biosynthetic systems. Furthermore, epimerisation of the first residue in these peptide antibiotics unexpectedly occurs during peptide bond formation.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/febs.15350</identifier><identifier>PMID: 32359003</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Amino acids ; Antibiotics ; Assembly lines ; Biosynthesis ; epimerisation ; glycopeptide antibiotics ; Glycopeptides ; Modules ; nonribosomal peptide synthetase ; Peptides ; Redesign ; Residues ; Stereochemistry ; Teicoplanin</subject><ispartof>The FEBS journal, 2021-01, Vol.288 (2), p.507-529</ispartof><rights>2020 Federation of European Biochemical Societies</rights><rights>2020 Federation of European Biochemical Societies.</rights><rights>Copyright © 2021 Federation of European Biochemical Societies</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3930-159404ab6a70fbd07fe9127ecb39aa77f137844a8d7450129c4ace2494cb5ac73</citedby><cites>FETCH-LOGICAL-c3930-159404ab6a70fbd07fe9127ecb39aa77f137844a8d7450129c4ace2494cb5ac73</cites><orcidid>0000-0002-9739-6157</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ffebs.15350$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ffebs.15350$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27923,27924,45573,45574,46408,46832</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32359003$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaniusaite, Milda</creatorcontrib><creatorcontrib>Tailhades, Julien</creatorcontrib><creatorcontrib>Kittilä, Tiia</creatorcontrib><creatorcontrib>Fage, Christopher D.</creatorcontrib><creatorcontrib>Goode, Robert J.A.</creatorcontrib><creatorcontrib>Schittenhelm, Ralf B.</creatorcontrib><creatorcontrib>Cryle, Max J.</creatorcontrib><title>Understanding the early stages of peptide formation during the biosynthesis of teicoplanin and related glycopeptide antibiotics</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>The biosynthesis of the glycopeptide antibiotics (GPAs) demonstrates the exceptional ability of nonribosomal peptide (NRP) synthesis to generate diverse and complex structures from an expanded array of amino acid precursors. Whilst the heptapeptide cores of GPAs share a conserved C terminus, including the aromatic residues involved cross‐linking and that are essential for the antibiotic activity of GPAs, most structural diversity is found within the N terminus of the peptide. Furthermore, the origin of the (D)‐stereochemistry of residue 1 of all GPAs is currently unclear, despite its importance for antibiotic activity. Given these important features, we have now reconstituted modules (M) 1–4 of the NRP synthetase (NRPS) assembly lines that synthesise the clinically relevant type IV GPA teicoplanin and the related compound A40926. Our results show that important roles in amino acid modification during the NRPS‐mediated biosynthesis of GPAs can be ascribed to the actions of condensation domains present within these modules, including the incorporation of (D)‐amino acids at position 1 of the peptide. Our results also indicate that hybrid NRPS assembly lines can be generated in a facile manner by mixing NRPS proteins from different systems and that uncoupling of peptide formation due to different rates of activity seen for NRPS modules can be controlled by varying the ratio of NRPS modules. Taken together, this indicates that NRPS assembly lines function as dynamic peptide assembly lines and not static megaenzyme complexes, which has significant implications for biosynthetic redesign of these important biosynthetic systems. Reconstitution of the first four modules of the nonribosomal peptide synthetase machinery that biosynthesises clinically relevant glycopeptide antibiotics has revealed that these are dynamic megaenzyme complexes, from which hybrid assembly lines can be generated simply by mixing modules from different biosynthetic systems. Furthermore, epimerisation of the first residue in these peptide antibiotics unexpectedly occurs during peptide bond formation.</description><subject>Amino acids</subject><subject>Antibiotics</subject><subject>Assembly lines</subject><subject>Biosynthesis</subject><subject>epimerisation</subject><subject>glycopeptide antibiotics</subject><subject>Glycopeptides</subject><subject>Modules</subject><subject>nonribosomal peptide synthetase</subject><subject>Peptides</subject><subject>Redesign</subject><subject>Residues</subject><subject>Stereochemistry</subject><subject>Teicoplanin</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LJDEQhoO4rF978QcsAS8ijCadpNM5qvgFwh5WwVtIp6tnIz1Jm6SRPu1f3-iMHjxsXVIpnnooeBE6pOSUljrroU2nVDBBttAulbxa8Fo02589f9pBeyk9E8IEV-o72mEVE6p8d9HfR99BTNn4zvklzn8Ag4nDjMtoCQmHHo8wZtcB7kNcmeyCx90UP-DWhTT70iX3DmdwNoyD8c7j4sQRBpOhw8thLvONyfjsymJ2Nh2gb70ZEvzYvPvo8frq4fJ2cf_r5u7y_H5hmWJkQYXihJu2NpL0bUdkD4pWEmzLlDFS9pTJhnPTdJILQitlubFQccVtK4yVbB8dr71jDC8TpKxXLlkYyqUQpqQrpmRdN0LSgh59QZ_DFH25TldcNlLQqqkLdbKmbAwpRej1GN3KxFlTot9i0W-x6PdYCvxzo5zaFXSf6EcOBaBr4NUNMP9Hpa-vLn6vpf8AMNmaAw</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Kaniusaite, Milda</creator><creator>Tailhades, Julien</creator><creator>Kittilä, Tiia</creator><creator>Fage, Christopher D.</creator><creator>Goode, Robert J.A.</creator><creator>Schittenhelm, Ralf B.</creator><creator>Cryle, Max J.</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9739-6157</orcidid></search><sort><creationdate>202101</creationdate><title>Understanding the early stages of peptide formation during the biosynthesis of teicoplanin and related glycopeptide antibiotics</title><author>Kaniusaite, Milda ; Tailhades, Julien ; Kittilä, Tiia ; Fage, Christopher D. ; Goode, Robert J.A. ; Schittenhelm, Ralf B. ; Cryle, Max J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3930-159404ab6a70fbd07fe9127ecb39aa77f137844a8d7450129c4ace2494cb5ac73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino acids</topic><topic>Antibiotics</topic><topic>Assembly lines</topic><topic>Biosynthesis</topic><topic>epimerisation</topic><topic>glycopeptide antibiotics</topic><topic>Glycopeptides</topic><topic>Modules</topic><topic>nonribosomal peptide synthetase</topic><topic>Peptides</topic><topic>Redesign</topic><topic>Residues</topic><topic>Stereochemistry</topic><topic>Teicoplanin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaniusaite, Milda</creatorcontrib><creatorcontrib>Tailhades, Julien</creatorcontrib><creatorcontrib>Kittilä, Tiia</creatorcontrib><creatorcontrib>Fage, Christopher D.</creatorcontrib><creatorcontrib>Goode, Robert J.A.</creatorcontrib><creatorcontrib>Schittenhelm, Ralf B.</creatorcontrib><creatorcontrib>Cryle, Max J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaniusaite, Milda</au><au>Tailhades, Julien</au><au>Kittilä, Tiia</au><au>Fage, Christopher D.</au><au>Goode, Robert J.A.</au><au>Schittenhelm, Ralf B.</au><au>Cryle, Max J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the early stages of peptide formation during the biosynthesis of teicoplanin and related glycopeptide antibiotics</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2021-01</date><risdate>2021</risdate><volume>288</volume><issue>2</issue><spage>507</spage><epage>529</epage><pages>507-529</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>The biosynthesis of the glycopeptide antibiotics (GPAs) demonstrates the exceptional ability of nonribosomal peptide (NRP) synthesis to generate diverse and complex structures from an expanded array of amino acid precursors. Whilst the heptapeptide cores of GPAs share a conserved C terminus, including the aromatic residues involved cross‐linking and that are essential for the antibiotic activity of GPAs, most structural diversity is found within the N terminus of the peptide. Furthermore, the origin of the (D)‐stereochemistry of residue 1 of all GPAs is currently unclear, despite its importance for antibiotic activity. Given these important features, we have now reconstituted modules (M) 1–4 of the NRP synthetase (NRPS) assembly lines that synthesise the clinically relevant type IV GPA teicoplanin and the related compound A40926. Our results show that important roles in amino acid modification during the NRPS‐mediated biosynthesis of GPAs can be ascribed to the actions of condensation domains present within these modules, including the incorporation of (D)‐amino acids at position 1 of the peptide. Our results also indicate that hybrid NRPS assembly lines can be generated in a facile manner by mixing NRPS proteins from different systems and that uncoupling of peptide formation due to different rates of activity seen for NRPS modules can be controlled by varying the ratio of NRPS modules. Taken together, this indicates that NRPS assembly lines function as dynamic peptide assembly lines and not static megaenzyme complexes, which has significant implications for biosynthetic redesign of these important biosynthetic systems. Reconstitution of the first four modules of the nonribosomal peptide synthetase machinery that biosynthesises clinically relevant glycopeptide antibiotics has revealed that these are dynamic megaenzyme complexes, from which hybrid assembly lines can be generated simply by mixing modules from different biosynthetic systems. Furthermore, epimerisation of the first residue in these peptide antibiotics unexpectedly occurs during peptide bond formation.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>32359003</pmid><doi>10.1111/febs.15350</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-9739-6157</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-464X
ispartof The FEBS journal, 2021-01, Vol.288 (2), p.507-529
issn 1742-464X
1742-4658
language eng
recordid cdi_proquest_miscellaneous_2397668571
source Wiley Online Library Journals Frontfile Complete; Wiley Free Content; Free Full-Text Journals in Chemistry
subjects Amino acids
Antibiotics
Assembly lines
Biosynthesis
epimerisation
glycopeptide antibiotics
Glycopeptides
Modules
nonribosomal peptide synthetase
Peptides
Redesign
Residues
Stereochemistry
Teicoplanin
title Understanding the early stages of peptide formation during the biosynthesis of teicoplanin and related glycopeptide antibiotics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A14%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20early%20stages%20of%20peptide%20formation%20during%20the%20biosynthesis%20of%20teicoplanin%20and%20related%20glycopeptide%20antibiotics&rft.jtitle=The%20FEBS%20journal&rft.au=Kaniusaite,%20Milda&rft.date=2021-01&rft.volume=288&rft.issue=2&rft.spage=507&rft.epage=529&rft.pages=507-529&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/febs.15350&rft_dat=%3Cproquest_cross%3E2397668571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478751286&rft_id=info:pmid/32359003&rfr_iscdi=true