Improved production of GTKO/hCD55/hCD59 triple-gene-modified Diannan miniature pigs for xenotransplantation by recloning
Multiple genetic modification is necessary for successful xenotransplantation from pigs. However, multiple-genetically modified cells usually suffer from various drug selections and long-term in vitro culture, which have a poor performance for somatic cell nuclear transfer (SCNT) to produce genetica...
Gespeichert in:
Veröffentlicht in: | Transgenic research 2020-06, Vol.29 (3), p.369-379 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 379 |
---|---|
container_issue | 3 |
container_start_page | 369 |
container_title | Transgenic research |
container_volume | 29 |
creator | Zhao, Heng Li, Yuying Wiriyahdamrong, Thanapa Yuan, Zaimei Qing, Yubo Li, Honghui Xu, Kaixiang Guo, Jianxiong Jia, Baoyu Zhang, Xuezeng Cheng, Wenmin Su, Yanhua Long, Weihu Wang, Jing Zou, Di Kinoshita, Keji Zhao, Hong-Ye Wei, Hong-Jiang |
description | Multiple genetic modification is necessary for successful xenotransplantation from pigs. However, multiple-genetically modified cells usually suffer from various drug selections and long-term in vitro culture, which have a poor performance for somatic cell nuclear transfer (SCNT) to produce genetically modified pigs. We used to generate GTKO/hCD55/hCD59 triple-gene modified pigs by using drug-selective cell lines for SCNT, but the majority of cloned pigs were transgenic-negative individuals. In this study, to improve the production efficiency of multiple genetically modified pigs, we performed the recloning process by using transgenic porcine fetal fibroblast cells. As a result, two fetuses expressing hCD55 and hCD59 were obtained from 12 live-cloned fetuses, and one carrying high transgene expression was selected as a source of donor cells for recloning. Then we obtained 12 cloned piglets, all GTKO and carrying hCD55 and hCD59. Both hCD55 and hCD59 were expressed in fibroblast cells, but the expression levels of hCD55 and hCD59 were different among these piglets. Furthermore, piglet P5# had the highest expression of hCD55 and hCD59 in fibroblast cells than other piglets. Correspondingly, fibroblast cells of piglet P5# had significantly higher resistance against human serum-mediated cytolysis than those of piglet P11#. In conclusion, our results firstly provide support for improving efficiency of generating multiple genetically modified pig by recloning. |
doi_str_mv | 10.1007/s11248-020-00201-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2397666389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2397666389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-2c4e6a58d93c376aae970fbaa67db4759bfce90a4fd5c802bf51c365397f04ac3</originalsourceid><addsrcrecordid>eNp9kU9PHSEUxUlTU1-f_QJdNCTddEPlz8DA0jytGk3c6JowDLxiZmCEGaPfXvqebRMXbu5NuL9z7iUHgK8E_yQYt8eFENpIhClGuBaC6AewIrxlSDEhP4IVVoIiKYk6BJ9Luce4yiT7BA4ZZVy2lKzA0-U45fToelhbv9g5pAiTh-e3VzfHvzennO-qgnMO0-DQ1kWHxtQHH6rmNJgYTYRjiMHMS3ZwCtsCfcrwycU0ZxPLNJg4m51v9wyzs0OKIW6PwIE3Q3FfXvsa3P06u91coOub88vNyTWyrOUzorZxwnDZK1YfhDFOtdh3xoi275qWq85bp7BpfM-txLTznFgmOFOtx42xbA1-7H3r_x4WV2Y9hmLdUK9yaSmaVlIIwaSq6Pc36H1acqzXadoQgjkhTVMpuqdsTqVk5_WUw2jysyZY_8lF73PRNRK9y6XuWINvr9ZLN7r-n-RvEBVge6DUUdy6_H_3O7YvaLSY9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2411051144</pqid></control><display><type>article</type><title>Improved production of GTKO/hCD55/hCD59 triple-gene-modified Diannan miniature pigs for xenotransplantation by recloning</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhao, Heng ; Li, Yuying ; Wiriyahdamrong, Thanapa ; Yuan, Zaimei ; Qing, Yubo ; Li, Honghui ; Xu, Kaixiang ; Guo, Jianxiong ; Jia, Baoyu ; Zhang, Xuezeng ; Cheng, Wenmin ; Su, Yanhua ; Long, Weihu ; Wang, Jing ; Zou, Di ; Kinoshita, Keji ; Zhao, Hong-Ye ; Wei, Hong-Jiang</creator><creatorcontrib>Zhao, Heng ; Li, Yuying ; Wiriyahdamrong, Thanapa ; Yuan, Zaimei ; Qing, Yubo ; Li, Honghui ; Xu, Kaixiang ; Guo, Jianxiong ; Jia, Baoyu ; Zhang, Xuezeng ; Cheng, Wenmin ; Su, Yanhua ; Long, Weihu ; Wang, Jing ; Zou, Di ; Kinoshita, Keji ; Zhao, Hong-Ye ; Wei, Hong-Jiang</creatorcontrib><description>Multiple genetic modification is necessary for successful xenotransplantation from pigs. However, multiple-genetically modified cells usually suffer from various drug selections and long-term in vitro culture, which have a poor performance for somatic cell nuclear transfer (SCNT) to produce genetically modified pigs. We used to generate GTKO/hCD55/hCD59 triple-gene modified pigs by using drug-selective cell lines for SCNT, but the majority of cloned pigs were transgenic-negative individuals. In this study, to improve the production efficiency of multiple genetically modified pigs, we performed the recloning process by using transgenic porcine fetal fibroblast cells. As a result, two fetuses expressing hCD55 and hCD59 were obtained from 12 live-cloned fetuses, and one carrying high transgene expression was selected as a source of donor cells for recloning. Then we obtained 12 cloned piglets, all GTKO and carrying hCD55 and hCD59. Both hCD55 and hCD59 were expressed in fibroblast cells, but the expression levels of hCD55 and hCD59 were different among these piglets. Furthermore, piglet P5# had the highest expression of hCD55 and hCD59 in fibroblast cells than other piglets. Correspondingly, fibroblast cells of piglet P5# had significantly higher resistance against human serum-mediated cytolysis than those of piglet P11#. In conclusion, our results firstly provide support for improving efficiency of generating multiple genetically modified pig by recloning.</description><identifier>ISSN: 0962-8819</identifier><identifier>EISSN: 1573-9368</identifier><identifier>DOI: 10.1007/s11248-020-00201-2</identifier><identifier>PMID: 32358721</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Animal Genetics and Genomics ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Brief Communication ; Cell culture ; Cell lines ; Cloning ; Cytolysis ; Fetuses ; Fibroblasts ; Genetic Engineering ; Hogs ; Life Sciences ; Molecular Medicine ; Nuclear transfer ; Plant Genetics and Genomics ; Somatic cell nuclear transfer ; Transgenics ; Xenografts ; Xenotransplantation</subject><ispartof>Transgenic research, 2020-06, Vol.29 (3), p.369-379</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-2c4e6a58d93c376aae970fbaa67db4759bfce90a4fd5c802bf51c365397f04ac3</citedby><cites>FETCH-LOGICAL-c375t-2c4e6a58d93c376aae970fbaa67db4759bfce90a4fd5c802bf51c365397f04ac3</cites><orcidid>0000-0002-5663-1093 ; 0000-0002-5900-3033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11248-020-00201-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11248-020-00201-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32358721$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Heng</creatorcontrib><creatorcontrib>Li, Yuying</creatorcontrib><creatorcontrib>Wiriyahdamrong, Thanapa</creatorcontrib><creatorcontrib>Yuan, Zaimei</creatorcontrib><creatorcontrib>Qing, Yubo</creatorcontrib><creatorcontrib>Li, Honghui</creatorcontrib><creatorcontrib>Xu, Kaixiang</creatorcontrib><creatorcontrib>Guo, Jianxiong</creatorcontrib><creatorcontrib>Jia, Baoyu</creatorcontrib><creatorcontrib>Zhang, Xuezeng</creatorcontrib><creatorcontrib>Cheng, Wenmin</creatorcontrib><creatorcontrib>Su, Yanhua</creatorcontrib><creatorcontrib>Long, Weihu</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Zou, Di</creatorcontrib><creatorcontrib>Kinoshita, Keji</creatorcontrib><creatorcontrib>Zhao, Hong-Ye</creatorcontrib><creatorcontrib>Wei, Hong-Jiang</creatorcontrib><title>Improved production of GTKO/hCD55/hCD59 triple-gene-modified Diannan miniature pigs for xenotransplantation by recloning</title><title>Transgenic research</title><addtitle>Transgenic Res</addtitle><addtitle>Transgenic Res</addtitle><description>Multiple genetic modification is necessary for successful xenotransplantation from pigs. However, multiple-genetically modified cells usually suffer from various drug selections and long-term in vitro culture, which have a poor performance for somatic cell nuclear transfer (SCNT) to produce genetically modified pigs. We used to generate GTKO/hCD55/hCD59 triple-gene modified pigs by using drug-selective cell lines for SCNT, but the majority of cloned pigs were transgenic-negative individuals. In this study, to improve the production efficiency of multiple genetically modified pigs, we performed the recloning process by using transgenic porcine fetal fibroblast cells. As a result, two fetuses expressing hCD55 and hCD59 were obtained from 12 live-cloned fetuses, and one carrying high transgene expression was selected as a source of donor cells for recloning. Then we obtained 12 cloned piglets, all GTKO and carrying hCD55 and hCD59. Both hCD55 and hCD59 were expressed in fibroblast cells, but the expression levels of hCD55 and hCD59 were different among these piglets. Furthermore, piglet P5# had the highest expression of hCD55 and hCD59 in fibroblast cells than other piglets. Correspondingly, fibroblast cells of piglet P5# had significantly higher resistance against human serum-mediated cytolysis than those of piglet P11#. In conclusion, our results firstly provide support for improving efficiency of generating multiple genetically modified pig by recloning.</description><subject>Animal Genetics and Genomics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Brief Communication</subject><subject>Cell culture</subject><subject>Cell lines</subject><subject>Cloning</subject><subject>Cytolysis</subject><subject>Fetuses</subject><subject>Fibroblasts</subject><subject>Genetic Engineering</subject><subject>Hogs</subject><subject>Life Sciences</subject><subject>Molecular Medicine</subject><subject>Nuclear transfer</subject><subject>Plant Genetics and Genomics</subject><subject>Somatic cell nuclear transfer</subject><subject>Transgenics</subject><subject>Xenografts</subject><subject>Xenotransplantation</subject><issn>0962-8819</issn><issn>1573-9368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9PHSEUxUlTU1-f_QJdNCTddEPlz8DA0jytGk3c6JowDLxiZmCEGaPfXvqebRMXbu5NuL9z7iUHgK8E_yQYt8eFENpIhClGuBaC6AewIrxlSDEhP4IVVoIiKYk6BJ9Luce4yiT7BA4ZZVy2lKzA0-U45fToelhbv9g5pAiTh-e3VzfHvzennO-qgnMO0-DQ1kWHxtQHH6rmNJgYTYRjiMHMS3ZwCtsCfcrwycU0ZxPLNJg4m51v9wyzs0OKIW6PwIE3Q3FfXvsa3P06u91coOub88vNyTWyrOUzorZxwnDZK1YfhDFOtdh3xoi275qWq85bp7BpfM-txLTznFgmOFOtx42xbA1-7H3r_x4WV2Y9hmLdUK9yaSmaVlIIwaSq6Pc36H1acqzXadoQgjkhTVMpuqdsTqVk5_WUw2jysyZY_8lF73PRNRK9y6XuWINvr9ZLN7r-n-RvEBVge6DUUdy6_H_3O7YvaLSY9A</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Zhao, Heng</creator><creator>Li, Yuying</creator><creator>Wiriyahdamrong, Thanapa</creator><creator>Yuan, Zaimei</creator><creator>Qing, Yubo</creator><creator>Li, Honghui</creator><creator>Xu, Kaixiang</creator><creator>Guo, Jianxiong</creator><creator>Jia, Baoyu</creator><creator>Zhang, Xuezeng</creator><creator>Cheng, Wenmin</creator><creator>Su, Yanhua</creator><creator>Long, Weihu</creator><creator>Wang, Jing</creator><creator>Zou, Di</creator><creator>Kinoshita, Keji</creator><creator>Zhao, Hong-Ye</creator><creator>Wei, Hong-Jiang</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5663-1093</orcidid><orcidid>https://orcid.org/0000-0002-5900-3033</orcidid></search><sort><creationdate>20200601</creationdate><title>Improved production of GTKO/hCD55/hCD59 triple-gene-modified Diannan miniature pigs for xenotransplantation by recloning</title><author>Zhao, Heng ; Li, Yuying ; Wiriyahdamrong, Thanapa ; Yuan, Zaimei ; Qing, Yubo ; Li, Honghui ; Xu, Kaixiang ; Guo, Jianxiong ; Jia, Baoyu ; Zhang, Xuezeng ; Cheng, Wenmin ; Su, Yanhua ; Long, Weihu ; Wang, Jing ; Zou, Di ; Kinoshita, Keji ; Zhao, Hong-Ye ; Wei, Hong-Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-2c4e6a58d93c376aae970fbaa67db4759bfce90a4fd5c802bf51c365397f04ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal Genetics and Genomics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Brief Communication</topic><topic>Cell culture</topic><topic>Cell lines</topic><topic>Cloning</topic><topic>Cytolysis</topic><topic>Fetuses</topic><topic>Fibroblasts</topic><topic>Genetic Engineering</topic><topic>Hogs</topic><topic>Life Sciences</topic><topic>Molecular Medicine</topic><topic>Nuclear transfer</topic><topic>Plant Genetics and Genomics</topic><topic>Somatic cell nuclear transfer</topic><topic>Transgenics</topic><topic>Xenografts</topic><topic>Xenotransplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Heng</creatorcontrib><creatorcontrib>Li, Yuying</creatorcontrib><creatorcontrib>Wiriyahdamrong, Thanapa</creatorcontrib><creatorcontrib>Yuan, Zaimei</creatorcontrib><creatorcontrib>Qing, Yubo</creatorcontrib><creatorcontrib>Li, Honghui</creatorcontrib><creatorcontrib>Xu, Kaixiang</creatorcontrib><creatorcontrib>Guo, Jianxiong</creatorcontrib><creatorcontrib>Jia, Baoyu</creatorcontrib><creatorcontrib>Zhang, Xuezeng</creatorcontrib><creatorcontrib>Cheng, Wenmin</creatorcontrib><creatorcontrib>Su, Yanhua</creatorcontrib><creatorcontrib>Long, Weihu</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Zou, Di</creatorcontrib><creatorcontrib>Kinoshita, Keji</creatorcontrib><creatorcontrib>Zhao, Hong-Ye</creatorcontrib><creatorcontrib>Wei, Hong-Jiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Transgenic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Heng</au><au>Li, Yuying</au><au>Wiriyahdamrong, Thanapa</au><au>Yuan, Zaimei</au><au>Qing, Yubo</au><au>Li, Honghui</au><au>Xu, Kaixiang</au><au>Guo, Jianxiong</au><au>Jia, Baoyu</au><au>Zhang, Xuezeng</au><au>Cheng, Wenmin</au><au>Su, Yanhua</au><au>Long, Weihu</au><au>Wang, Jing</au><au>Zou, Di</au><au>Kinoshita, Keji</au><au>Zhao, Hong-Ye</au><au>Wei, Hong-Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved production of GTKO/hCD55/hCD59 triple-gene-modified Diannan miniature pigs for xenotransplantation by recloning</atitle><jtitle>Transgenic research</jtitle><stitle>Transgenic Res</stitle><addtitle>Transgenic Res</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>29</volume><issue>3</issue><spage>369</spage><epage>379</epage><pages>369-379</pages><issn>0962-8819</issn><eissn>1573-9368</eissn><abstract>Multiple genetic modification is necessary for successful xenotransplantation from pigs. However, multiple-genetically modified cells usually suffer from various drug selections and long-term in vitro culture, which have a poor performance for somatic cell nuclear transfer (SCNT) to produce genetically modified pigs. We used to generate GTKO/hCD55/hCD59 triple-gene modified pigs by using drug-selective cell lines for SCNT, but the majority of cloned pigs were transgenic-negative individuals. In this study, to improve the production efficiency of multiple genetically modified pigs, we performed the recloning process by using transgenic porcine fetal fibroblast cells. As a result, two fetuses expressing hCD55 and hCD59 were obtained from 12 live-cloned fetuses, and one carrying high transgene expression was selected as a source of donor cells for recloning. Then we obtained 12 cloned piglets, all GTKO and carrying hCD55 and hCD59. Both hCD55 and hCD59 were expressed in fibroblast cells, but the expression levels of hCD55 and hCD59 were different among these piglets. Furthermore, piglet P5# had the highest expression of hCD55 and hCD59 in fibroblast cells than other piglets. Correspondingly, fibroblast cells of piglet P5# had significantly higher resistance against human serum-mediated cytolysis than those of piglet P11#. In conclusion, our results firstly provide support for improving efficiency of generating multiple genetically modified pig by recloning.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>32358721</pmid><doi>10.1007/s11248-020-00201-2</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5663-1093</orcidid><orcidid>https://orcid.org/0000-0002-5900-3033</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-8819 |
ispartof | Transgenic research, 2020-06, Vol.29 (3), p.369-379 |
issn | 0962-8819 1573-9368 |
language | eng |
recordid | cdi_proquest_miscellaneous_2397666389 |
source | SpringerLink Journals - AutoHoldings |
subjects | Animal Genetics and Genomics Biomedical and Life Sciences Biomedical Engineering/Biotechnology Brief Communication Cell culture Cell lines Cloning Cytolysis Fetuses Fibroblasts Genetic Engineering Hogs Life Sciences Molecular Medicine Nuclear transfer Plant Genetics and Genomics Somatic cell nuclear transfer Transgenics Xenografts Xenotransplantation |
title | Improved production of GTKO/hCD55/hCD59 triple-gene-modified Diannan miniature pigs for xenotransplantation by recloning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A18%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20production%20of%20GTKO/hCD55/hCD59%20triple-gene-modified%20Diannan%20miniature%20pigs%20for%20xenotransplantation%20by%20recloning&rft.jtitle=Transgenic%20research&rft.au=Zhao,%20Heng&rft.date=2020-06-01&rft.volume=29&rft.issue=3&rft.spage=369&rft.epage=379&rft.pages=369-379&rft.issn=0962-8819&rft.eissn=1573-9368&rft_id=info:doi/10.1007/s11248-020-00201-2&rft_dat=%3Cproquest_cross%3E2397666389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2411051144&rft_id=info:pmid/32358721&rfr_iscdi=true |