Phosphonium Modification Leads to Ultrapermeable Antibacterial Polyamide Composite Membranes with Unreduced Thickness

Water transport rate in network membranes is inversely correlated to thickness, thus superior permeance is achievable with ultrathin membranes prepared by complicated methods circumventing nanofilm weakness and defects. Conferring ultrahigh permeance to easily prepared thicker membranes remains chal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2020-06, Vol.32 (23), p.e2001383-n/a
Hauptverfasser: Peng, Huawen, Zhang, Wen‐Hai, Hung, Wei‐Song, Wang, Naixin, Sun, Jian, Lee, Kueir‐Rarn, An, Quan‐Fu, Liu, Cheng‐Mei, Zhao, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page e2001383
container_title Advanced materials (Weinheim)
container_volume 32
creator Peng, Huawen
Zhang, Wen‐Hai
Hung, Wei‐Song
Wang, Naixin
Sun, Jian
Lee, Kueir‐Rarn
An, Quan‐Fu
Liu, Cheng‐Mei
Zhao, Qiang
description Water transport rate in network membranes is inversely correlated to thickness, thus superior permeance is achievable with ultrathin membranes prepared by complicated methods circumventing nanofilm weakness and defects. Conferring ultrahigh permeance to easily prepared thicker membranes remains challenging. Here, a tetrakis(hydroxymethyl) phosphonium chloride (THPC) monomer is discovered that enables straightforward modification of polyamide composite membranes. Water permeance of the modified membrane is ≈6 times improved, give rising to permeability (permeance × thickness) one magnitude higher than state‐of‐the‐art polymer nanofiltration membranes. Meanwhile, the membrane exhibits good rejection (RNa2SO4 = 98%) and antibacterial properties under crossflow conditions. THPC modification not only improves membrane hydrophilicity, but also creates additional angstrom‐scale channels in polyamide membranes for unimpeded transport of water. This unique mechanism provides a paradigm shift in facile preparation of ultrapermeable membranes with unreduced thickness for clean water and desalination. Facile modification of polyamide composite membranes by an inexpensive phosphonium monomer featuring tetrahedral geometry is found to create additional water transport channels, improving the water purification performance without reducing film thickness. Compared with cutting‐edge ultrathin membranes, the modified membrane highlights good rejection, antibacterial properties, superior water permeability, and facile preparation.
doi_str_mv 10.1002/adma.202001383
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2396858289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2396858289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4103-7a5933ebf152d282fa5003a8c8e1a961ccf60c4e8b2aad12ca08e445ea9fe48d3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EotvClSOyxIVLlvFHUvu4WqAg7YoeuudoYk-0Lkkc7ETV_ntSbSkSF04jjZ559I5ext4JWAsA-Ql9j2sJEkAoo16wlSilKDTY8iVbgVVlYSttLthlzvcAYCuoXrMLJVUJ9lqv2Hx7jHk8xiHMPd9HH9rgcApx4DtCn_kU-aGbEo6UesKmI74ZptCgmygF7Pht7E7YB098G_sx5jAR31PfJBwo84cwHflhSORnR57fHYP7uezzG_aqxS7T26d5xQ5fv9xtvxW7Hzfft5td4bQAVVxjaZWipl2e8tLIFksAhcYZEmgr4VxbgdNkGonohXQIhrQuCW1L2nh1xT6evWOKv2bKU92H7KjrlnRxzrVUtjKlkcYu6Id_0Ps4p2FJV0stBFRSGL1Q6zPlUsw5UVuPKfSYTrWA-rGQ-rGQ-rmQ5eD9k3ZuevLP-J8GFsCegYfQ0ek_unrzeb_5K_8NUDKZLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2411062184</pqid></control><display><type>article</type><title>Phosphonium Modification Leads to Ultrapermeable Antibacterial Polyamide Composite Membranes with Unreduced Thickness</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Peng, Huawen ; Zhang, Wen‐Hai ; Hung, Wei‐Song ; Wang, Naixin ; Sun, Jian ; Lee, Kueir‐Rarn ; An, Quan‐Fu ; Liu, Cheng‐Mei ; Zhao, Qiang</creator><creatorcontrib>Peng, Huawen ; Zhang, Wen‐Hai ; Hung, Wei‐Song ; Wang, Naixin ; Sun, Jian ; Lee, Kueir‐Rarn ; An, Quan‐Fu ; Liu, Cheng‐Mei ; Zhao, Qiang</creatorcontrib><description>Water transport rate in network membranes is inversely correlated to thickness, thus superior permeance is achievable with ultrathin membranes prepared by complicated methods circumventing nanofilm weakness and defects. Conferring ultrahigh permeance to easily prepared thicker membranes remains challenging. Here, a tetrakis(hydroxymethyl) phosphonium chloride (THPC) monomer is discovered that enables straightforward modification of polyamide composite membranes. Water permeance of the modified membrane is ≈6 times improved, give rising to permeability (permeance × thickness) one magnitude higher than state‐of‐the‐art polymer nanofiltration membranes. Meanwhile, the membrane exhibits good rejection (RNa2SO4 = 98%) and antibacterial properties under crossflow conditions. THPC modification not only improves membrane hydrophilicity, but also creates additional angstrom‐scale channels in polyamide membranes for unimpeded transport of water. This unique mechanism provides a paradigm shift in facile preparation of ultrapermeable membranes with unreduced thickness for clean water and desalination. Facile modification of polyamide composite membranes by an inexpensive phosphonium monomer featuring tetrahedral geometry is found to create additional water transport channels, improving the water purification performance without reducing film thickness. Compared with cutting‐edge ultrathin membranes, the modified membrane highlights good rejection, antibacterial properties, superior water permeability, and facile preparation.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202001383</identifier><identifier>PMID: 32350974</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; clean water ; Cross flow ; Desalination ; free volume ; Materials science ; Membranes ; Membranes, Artificial ; Nanofiltration ; Nylons - chemistry ; Nylons - pharmacology ; Organophosphorus Compounds - chemistry ; Permeability ; phosphonium ; Polyamide resins ; Reluctance ; Thickness ; Transport rate ; ultrapermeable membranes ; Water - chemistry</subject><ispartof>Advanced materials (Weinheim), 2020-06, Vol.32 (23), p.e2001383-n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4103-7a5933ebf152d282fa5003a8c8e1a961ccf60c4e8b2aad12ca08e445ea9fe48d3</citedby><cites>FETCH-LOGICAL-c4103-7a5933ebf152d282fa5003a8c8e1a961ccf60c4e8b2aad12ca08e445ea9fe48d3</cites><orcidid>0000-0001-6201-2662</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202001383$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202001383$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1413,27906,27907,45556,45557</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32350974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Huawen</creatorcontrib><creatorcontrib>Zhang, Wen‐Hai</creatorcontrib><creatorcontrib>Hung, Wei‐Song</creatorcontrib><creatorcontrib>Wang, Naixin</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Lee, Kueir‐Rarn</creatorcontrib><creatorcontrib>An, Quan‐Fu</creatorcontrib><creatorcontrib>Liu, Cheng‐Mei</creatorcontrib><creatorcontrib>Zhao, Qiang</creatorcontrib><title>Phosphonium Modification Leads to Ultrapermeable Antibacterial Polyamide Composite Membranes with Unreduced Thickness</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Water transport rate in network membranes is inversely correlated to thickness, thus superior permeance is achievable with ultrathin membranes prepared by complicated methods circumventing nanofilm weakness and defects. Conferring ultrahigh permeance to easily prepared thicker membranes remains challenging. Here, a tetrakis(hydroxymethyl) phosphonium chloride (THPC) monomer is discovered that enables straightforward modification of polyamide composite membranes. Water permeance of the modified membrane is ≈6 times improved, give rising to permeability (permeance × thickness) one magnitude higher than state‐of‐the‐art polymer nanofiltration membranes. Meanwhile, the membrane exhibits good rejection (RNa2SO4 = 98%) and antibacterial properties under crossflow conditions. THPC modification not only improves membrane hydrophilicity, but also creates additional angstrom‐scale channels in polyamide membranes for unimpeded transport of water. This unique mechanism provides a paradigm shift in facile preparation of ultrapermeable membranes with unreduced thickness for clean water and desalination. Facile modification of polyamide composite membranes by an inexpensive phosphonium monomer featuring tetrahedral geometry is found to create additional water transport channels, improving the water purification performance without reducing film thickness. Compared with cutting‐edge ultrathin membranes, the modified membrane highlights good rejection, antibacterial properties, superior water permeability, and facile preparation.</description><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>clean water</subject><subject>Cross flow</subject><subject>Desalination</subject><subject>free volume</subject><subject>Materials science</subject><subject>Membranes</subject><subject>Membranes, Artificial</subject><subject>Nanofiltration</subject><subject>Nylons - chemistry</subject><subject>Nylons - pharmacology</subject><subject>Organophosphorus Compounds - chemistry</subject><subject>Permeability</subject><subject>phosphonium</subject><subject>Polyamide resins</subject><subject>Reluctance</subject><subject>Thickness</subject><subject>Transport rate</subject><subject>ultrapermeable membranes</subject><subject>Water - chemistry</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EotvClSOyxIVLlvFHUvu4WqAg7YoeuudoYk-0Lkkc7ETV_ntSbSkSF04jjZ559I5ext4JWAsA-Ql9j2sJEkAoo16wlSilKDTY8iVbgVVlYSttLthlzvcAYCuoXrMLJVUJ9lqv2Hx7jHk8xiHMPd9HH9rgcApx4DtCn_kU-aGbEo6UesKmI74ZptCgmygF7Pht7E7YB098G_sx5jAR31PfJBwo84cwHflhSORnR57fHYP7uezzG_aqxS7T26d5xQ5fv9xtvxW7Hzfft5td4bQAVVxjaZWipl2e8tLIFksAhcYZEmgr4VxbgdNkGonohXQIhrQuCW1L2nh1xT6evWOKv2bKU92H7KjrlnRxzrVUtjKlkcYu6Id_0Ps4p2FJV0stBFRSGL1Q6zPlUsw5UVuPKfSYTrWA-rGQ-rGQ-rmQ5eD9k3ZuevLP-J8GFsCegYfQ0ek_unrzeb_5K_8NUDKZLQ</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Peng, Huawen</creator><creator>Zhang, Wen‐Hai</creator><creator>Hung, Wei‐Song</creator><creator>Wang, Naixin</creator><creator>Sun, Jian</creator><creator>Lee, Kueir‐Rarn</creator><creator>An, Quan‐Fu</creator><creator>Liu, Cheng‐Mei</creator><creator>Zhao, Qiang</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6201-2662</orcidid></search><sort><creationdate>20200601</creationdate><title>Phosphonium Modification Leads to Ultrapermeable Antibacterial Polyamide Composite Membranes with Unreduced Thickness</title><author>Peng, Huawen ; Zhang, Wen‐Hai ; Hung, Wei‐Song ; Wang, Naixin ; Sun, Jian ; Lee, Kueir‐Rarn ; An, Quan‐Fu ; Liu, Cheng‐Mei ; Zhao, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4103-7a5933ebf152d282fa5003a8c8e1a961ccf60c4e8b2aad12ca08e445ea9fe48d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>clean water</topic><topic>Cross flow</topic><topic>Desalination</topic><topic>free volume</topic><topic>Materials science</topic><topic>Membranes</topic><topic>Membranes, Artificial</topic><topic>Nanofiltration</topic><topic>Nylons - chemistry</topic><topic>Nylons - pharmacology</topic><topic>Organophosphorus Compounds - chemistry</topic><topic>Permeability</topic><topic>phosphonium</topic><topic>Polyamide resins</topic><topic>Reluctance</topic><topic>Thickness</topic><topic>Transport rate</topic><topic>ultrapermeable membranes</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Huawen</creatorcontrib><creatorcontrib>Zhang, Wen‐Hai</creatorcontrib><creatorcontrib>Hung, Wei‐Song</creatorcontrib><creatorcontrib>Wang, Naixin</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Lee, Kueir‐Rarn</creatorcontrib><creatorcontrib>An, Quan‐Fu</creatorcontrib><creatorcontrib>Liu, Cheng‐Mei</creatorcontrib><creatorcontrib>Zhao, Qiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Huawen</au><au>Zhang, Wen‐Hai</au><au>Hung, Wei‐Song</au><au>Wang, Naixin</au><au>Sun, Jian</au><au>Lee, Kueir‐Rarn</au><au>An, Quan‐Fu</au><au>Liu, Cheng‐Mei</au><au>Zhao, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphonium Modification Leads to Ultrapermeable Antibacterial Polyamide Composite Membranes with Unreduced Thickness</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>32</volume><issue>23</issue><spage>e2001383</spage><epage>n/a</epage><pages>e2001383-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Water transport rate in network membranes is inversely correlated to thickness, thus superior permeance is achievable with ultrathin membranes prepared by complicated methods circumventing nanofilm weakness and defects. Conferring ultrahigh permeance to easily prepared thicker membranes remains challenging. Here, a tetrakis(hydroxymethyl) phosphonium chloride (THPC) monomer is discovered that enables straightforward modification of polyamide composite membranes. Water permeance of the modified membrane is ≈6 times improved, give rising to permeability (permeance × thickness) one magnitude higher than state‐of‐the‐art polymer nanofiltration membranes. Meanwhile, the membrane exhibits good rejection (RNa2SO4 = 98%) and antibacterial properties under crossflow conditions. THPC modification not only improves membrane hydrophilicity, but also creates additional angstrom‐scale channels in polyamide membranes for unimpeded transport of water. This unique mechanism provides a paradigm shift in facile preparation of ultrapermeable membranes with unreduced thickness for clean water and desalination. Facile modification of polyamide composite membranes by an inexpensive phosphonium monomer featuring tetrahedral geometry is found to create additional water transport channels, improving the water purification performance without reducing film thickness. Compared with cutting‐edge ultrathin membranes, the modified membrane highlights good rejection, antibacterial properties, superior water permeability, and facile preparation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32350974</pmid><doi>10.1002/adma.202001383</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6201-2662</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2020-06, Vol.32 (23), p.e2001383-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2396858289
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
clean water
Cross flow
Desalination
free volume
Materials science
Membranes
Membranes, Artificial
Nanofiltration
Nylons - chemistry
Nylons - pharmacology
Organophosphorus Compounds - chemistry
Permeability
phosphonium
Polyamide resins
Reluctance
Thickness
Transport rate
ultrapermeable membranes
Water - chemistry
title Phosphonium Modification Leads to Ultrapermeable Antibacterial Polyamide Composite Membranes with Unreduced Thickness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A55%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphonium%20Modification%20Leads%20to%20Ultrapermeable%20Antibacterial%20Polyamide%20Composite%20Membranes%20with%20Unreduced%20Thickness&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Peng,%20Huawen&rft.date=2020-06-01&rft.volume=32&rft.issue=23&rft.spage=e2001383&rft.epage=n/a&rft.pages=e2001383-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202001383&rft_dat=%3Cproquest_cross%3E2396858289%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2411062184&rft_id=info:pmid/32350974&rfr_iscdi=true