Phosphonium Modification Leads to Ultrapermeable Antibacterial Polyamide Composite Membranes with Unreduced Thickness
Water transport rate in network membranes is inversely correlated to thickness, thus superior permeance is achievable with ultrathin membranes prepared by complicated methods circumventing nanofilm weakness and defects. Conferring ultrahigh permeance to easily prepared thicker membranes remains chal...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2020-06, Vol.32 (23), p.e2001383-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 23 |
container_start_page | e2001383 |
container_title | Advanced materials (Weinheim) |
container_volume | 32 |
creator | Peng, Huawen Zhang, Wen‐Hai Hung, Wei‐Song Wang, Naixin Sun, Jian Lee, Kueir‐Rarn An, Quan‐Fu Liu, Cheng‐Mei Zhao, Qiang |
description | Water transport rate in network membranes is inversely correlated to thickness, thus superior permeance is achievable with ultrathin membranes prepared by complicated methods circumventing nanofilm weakness and defects. Conferring ultrahigh permeance to easily prepared thicker membranes remains challenging. Here, a tetrakis(hydroxymethyl) phosphonium chloride (THPC) monomer is discovered that enables straightforward modification of polyamide composite membranes. Water permeance of the modified membrane is ≈6 times improved, give rising to permeability (permeance × thickness) one magnitude higher than state‐of‐the‐art polymer nanofiltration membranes. Meanwhile, the membrane exhibits good rejection (RNa2SO4 = 98%) and antibacterial properties under crossflow conditions. THPC modification not only improves membrane hydrophilicity, but also creates additional angstrom‐scale channels in polyamide membranes for unimpeded transport of water. This unique mechanism provides a paradigm shift in facile preparation of ultrapermeable membranes with unreduced thickness for clean water and desalination.
Facile modification of polyamide composite membranes by an inexpensive phosphonium monomer featuring tetrahedral geometry is found to create additional water transport channels, improving the water purification performance without reducing film thickness. Compared with cutting‐edge ultrathin membranes, the modified membrane highlights good rejection, antibacterial properties, superior water permeability, and facile preparation. |
doi_str_mv | 10.1002/adma.202001383 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2396858289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2396858289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4103-7a5933ebf152d282fa5003a8c8e1a961ccf60c4e8b2aad12ca08e445ea9fe48d3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EotvClSOyxIVLlvFHUvu4WqAg7YoeuudoYk-0Lkkc7ETV_ntSbSkSF04jjZ559I5ext4JWAsA-Ql9j2sJEkAoo16wlSilKDTY8iVbgVVlYSttLthlzvcAYCuoXrMLJVUJ9lqv2Hx7jHk8xiHMPd9HH9rgcApx4DtCn_kU-aGbEo6UesKmI74ZptCgmygF7Pht7E7YB098G_sx5jAR31PfJBwo84cwHflhSORnR57fHYP7uezzG_aqxS7T26d5xQ5fv9xtvxW7Hzfft5td4bQAVVxjaZWipl2e8tLIFksAhcYZEmgr4VxbgdNkGonohXQIhrQuCW1L2nh1xT6evWOKv2bKU92H7KjrlnRxzrVUtjKlkcYu6Id_0Ps4p2FJV0stBFRSGL1Q6zPlUsw5UVuPKfSYTrWA-rGQ-rGQ-rmQ5eD9k3ZuevLP-J8GFsCegYfQ0ek_unrzeb_5K_8NUDKZLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2411062184</pqid></control><display><type>article</type><title>Phosphonium Modification Leads to Ultrapermeable Antibacterial Polyamide Composite Membranes with Unreduced Thickness</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Peng, Huawen ; Zhang, Wen‐Hai ; Hung, Wei‐Song ; Wang, Naixin ; Sun, Jian ; Lee, Kueir‐Rarn ; An, Quan‐Fu ; Liu, Cheng‐Mei ; Zhao, Qiang</creator><creatorcontrib>Peng, Huawen ; Zhang, Wen‐Hai ; Hung, Wei‐Song ; Wang, Naixin ; Sun, Jian ; Lee, Kueir‐Rarn ; An, Quan‐Fu ; Liu, Cheng‐Mei ; Zhao, Qiang</creatorcontrib><description>Water transport rate in network membranes is inversely correlated to thickness, thus superior permeance is achievable with ultrathin membranes prepared by complicated methods circumventing nanofilm weakness and defects. Conferring ultrahigh permeance to easily prepared thicker membranes remains challenging. Here, a tetrakis(hydroxymethyl) phosphonium chloride (THPC) monomer is discovered that enables straightforward modification of polyamide composite membranes. Water permeance of the modified membrane is ≈6 times improved, give rising to permeability (permeance × thickness) one magnitude higher than state‐of‐the‐art polymer nanofiltration membranes. Meanwhile, the membrane exhibits good rejection (RNa2SO4 = 98%) and antibacterial properties under crossflow conditions. THPC modification not only improves membrane hydrophilicity, but also creates additional angstrom‐scale channels in polyamide membranes for unimpeded transport of water. This unique mechanism provides a paradigm shift in facile preparation of ultrapermeable membranes with unreduced thickness for clean water and desalination.
Facile modification of polyamide composite membranes by an inexpensive phosphonium monomer featuring tetrahedral geometry is found to create additional water transport channels, improving the water purification performance without reducing film thickness. Compared with cutting‐edge ultrathin membranes, the modified membrane highlights good rejection, antibacterial properties, superior water permeability, and facile preparation.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202001383</identifier><identifier>PMID: 32350974</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; clean water ; Cross flow ; Desalination ; free volume ; Materials science ; Membranes ; Membranes, Artificial ; Nanofiltration ; Nylons - chemistry ; Nylons - pharmacology ; Organophosphorus Compounds - chemistry ; Permeability ; phosphonium ; Polyamide resins ; Reluctance ; Thickness ; Transport rate ; ultrapermeable membranes ; Water - chemistry</subject><ispartof>Advanced materials (Weinheim), 2020-06, Vol.32 (23), p.e2001383-n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4103-7a5933ebf152d282fa5003a8c8e1a961ccf60c4e8b2aad12ca08e445ea9fe48d3</citedby><cites>FETCH-LOGICAL-c4103-7a5933ebf152d282fa5003a8c8e1a961ccf60c4e8b2aad12ca08e445ea9fe48d3</cites><orcidid>0000-0001-6201-2662</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202001383$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202001383$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1413,27906,27907,45556,45557</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32350974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Huawen</creatorcontrib><creatorcontrib>Zhang, Wen‐Hai</creatorcontrib><creatorcontrib>Hung, Wei‐Song</creatorcontrib><creatorcontrib>Wang, Naixin</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Lee, Kueir‐Rarn</creatorcontrib><creatorcontrib>An, Quan‐Fu</creatorcontrib><creatorcontrib>Liu, Cheng‐Mei</creatorcontrib><creatorcontrib>Zhao, Qiang</creatorcontrib><title>Phosphonium Modification Leads to Ultrapermeable Antibacterial Polyamide Composite Membranes with Unreduced Thickness</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Water transport rate in network membranes is inversely correlated to thickness, thus superior permeance is achievable with ultrathin membranes prepared by complicated methods circumventing nanofilm weakness and defects. Conferring ultrahigh permeance to easily prepared thicker membranes remains challenging. Here, a tetrakis(hydroxymethyl) phosphonium chloride (THPC) monomer is discovered that enables straightforward modification of polyamide composite membranes. Water permeance of the modified membrane is ≈6 times improved, give rising to permeability (permeance × thickness) one magnitude higher than state‐of‐the‐art polymer nanofiltration membranes. Meanwhile, the membrane exhibits good rejection (RNa2SO4 = 98%) and antibacterial properties under crossflow conditions. THPC modification not only improves membrane hydrophilicity, but also creates additional angstrom‐scale channels in polyamide membranes for unimpeded transport of water. This unique mechanism provides a paradigm shift in facile preparation of ultrapermeable membranes with unreduced thickness for clean water and desalination.
Facile modification of polyamide composite membranes by an inexpensive phosphonium monomer featuring tetrahedral geometry is found to create additional water transport channels, improving the water purification performance without reducing film thickness. Compared with cutting‐edge ultrathin membranes, the modified membrane highlights good rejection, antibacterial properties, superior water permeability, and facile preparation.</description><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>clean water</subject><subject>Cross flow</subject><subject>Desalination</subject><subject>free volume</subject><subject>Materials science</subject><subject>Membranes</subject><subject>Membranes, Artificial</subject><subject>Nanofiltration</subject><subject>Nylons - chemistry</subject><subject>Nylons - pharmacology</subject><subject>Organophosphorus Compounds - chemistry</subject><subject>Permeability</subject><subject>phosphonium</subject><subject>Polyamide resins</subject><subject>Reluctance</subject><subject>Thickness</subject><subject>Transport rate</subject><subject>ultrapermeable membranes</subject><subject>Water - chemistry</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EotvClSOyxIVLlvFHUvu4WqAg7YoeuudoYk-0Lkkc7ETV_ntSbSkSF04jjZ559I5ext4JWAsA-Ql9j2sJEkAoo16wlSilKDTY8iVbgVVlYSttLthlzvcAYCuoXrMLJVUJ9lqv2Hx7jHk8xiHMPd9HH9rgcApx4DtCn_kU-aGbEo6UesKmI74ZptCgmygF7Pht7E7YB098G_sx5jAR31PfJBwo84cwHflhSORnR57fHYP7uezzG_aqxS7T26d5xQ5fv9xtvxW7Hzfft5td4bQAVVxjaZWipl2e8tLIFksAhcYZEmgr4VxbgdNkGonohXQIhrQuCW1L2nh1xT6evWOKv2bKU92H7KjrlnRxzrVUtjKlkcYu6Id_0Ps4p2FJV0stBFRSGL1Q6zPlUsw5UVuPKfSYTrWA-rGQ-rGQ-rmQ5eD9k3ZuevLP-J8GFsCegYfQ0ek_unrzeb_5K_8NUDKZLQ</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Peng, Huawen</creator><creator>Zhang, Wen‐Hai</creator><creator>Hung, Wei‐Song</creator><creator>Wang, Naixin</creator><creator>Sun, Jian</creator><creator>Lee, Kueir‐Rarn</creator><creator>An, Quan‐Fu</creator><creator>Liu, Cheng‐Mei</creator><creator>Zhao, Qiang</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6201-2662</orcidid></search><sort><creationdate>20200601</creationdate><title>Phosphonium Modification Leads to Ultrapermeable Antibacterial Polyamide Composite Membranes with Unreduced Thickness</title><author>Peng, Huawen ; Zhang, Wen‐Hai ; Hung, Wei‐Song ; Wang, Naixin ; Sun, Jian ; Lee, Kueir‐Rarn ; An, Quan‐Fu ; Liu, Cheng‐Mei ; Zhao, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4103-7a5933ebf152d282fa5003a8c8e1a961ccf60c4e8b2aad12ca08e445ea9fe48d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>clean water</topic><topic>Cross flow</topic><topic>Desalination</topic><topic>free volume</topic><topic>Materials science</topic><topic>Membranes</topic><topic>Membranes, Artificial</topic><topic>Nanofiltration</topic><topic>Nylons - chemistry</topic><topic>Nylons - pharmacology</topic><topic>Organophosphorus Compounds - chemistry</topic><topic>Permeability</topic><topic>phosphonium</topic><topic>Polyamide resins</topic><topic>Reluctance</topic><topic>Thickness</topic><topic>Transport rate</topic><topic>ultrapermeable membranes</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Huawen</creatorcontrib><creatorcontrib>Zhang, Wen‐Hai</creatorcontrib><creatorcontrib>Hung, Wei‐Song</creatorcontrib><creatorcontrib>Wang, Naixin</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Lee, Kueir‐Rarn</creatorcontrib><creatorcontrib>An, Quan‐Fu</creatorcontrib><creatorcontrib>Liu, Cheng‐Mei</creatorcontrib><creatorcontrib>Zhao, Qiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Huawen</au><au>Zhang, Wen‐Hai</au><au>Hung, Wei‐Song</au><au>Wang, Naixin</au><au>Sun, Jian</au><au>Lee, Kueir‐Rarn</au><au>An, Quan‐Fu</au><au>Liu, Cheng‐Mei</au><au>Zhao, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphonium Modification Leads to Ultrapermeable Antibacterial Polyamide Composite Membranes with Unreduced Thickness</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>32</volume><issue>23</issue><spage>e2001383</spage><epage>n/a</epage><pages>e2001383-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Water transport rate in network membranes is inversely correlated to thickness, thus superior permeance is achievable with ultrathin membranes prepared by complicated methods circumventing nanofilm weakness and defects. Conferring ultrahigh permeance to easily prepared thicker membranes remains challenging. Here, a tetrakis(hydroxymethyl) phosphonium chloride (THPC) monomer is discovered that enables straightforward modification of polyamide composite membranes. Water permeance of the modified membrane is ≈6 times improved, give rising to permeability (permeance × thickness) one magnitude higher than state‐of‐the‐art polymer nanofiltration membranes. Meanwhile, the membrane exhibits good rejection (RNa2SO4 = 98%) and antibacterial properties under crossflow conditions. THPC modification not only improves membrane hydrophilicity, but also creates additional angstrom‐scale channels in polyamide membranes for unimpeded transport of water. This unique mechanism provides a paradigm shift in facile preparation of ultrapermeable membranes with unreduced thickness for clean water and desalination.
Facile modification of polyamide composite membranes by an inexpensive phosphonium monomer featuring tetrahedral geometry is found to create additional water transport channels, improving the water purification performance without reducing film thickness. Compared with cutting‐edge ultrathin membranes, the modified membrane highlights good rejection, antibacterial properties, superior water permeability, and facile preparation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32350974</pmid><doi>10.1002/adma.202001383</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6201-2662</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2020-06, Vol.32 (23), p.e2001383-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2396858289 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - pharmacology clean water Cross flow Desalination free volume Materials science Membranes Membranes, Artificial Nanofiltration Nylons - chemistry Nylons - pharmacology Organophosphorus Compounds - chemistry Permeability phosphonium Polyamide resins Reluctance Thickness Transport rate ultrapermeable membranes Water - chemistry |
title | Phosphonium Modification Leads to Ultrapermeable Antibacterial Polyamide Composite Membranes with Unreduced Thickness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A55%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphonium%20Modification%20Leads%20to%20Ultrapermeable%20Antibacterial%20Polyamide%20Composite%20Membranes%20with%20Unreduced%20Thickness&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Peng,%20Huawen&rft.date=2020-06-01&rft.volume=32&rft.issue=23&rft.spage=e2001383&rft.epage=n/a&rft.pages=e2001383-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202001383&rft_dat=%3Cproquest_cross%3E2396858289%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2411062184&rft_id=info:pmid/32350974&rfr_iscdi=true |