“Ring Breaker”: Neural Network Driven Synthesis Prediction of the Ring System Chemical Space

Ring systems in pharmaceuticals, agrochemicals, and dyes are ubiquitous chemical motifs. While the synthesis of common ring systems is well described and novel ring systems can be readily and computationally enumerated, the synthetic accessibility of unprecedented ring systems remains a challenge. “...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2020-08, Vol.63 (16), p.8791-8808
Hauptverfasser: Thakkar, Amol, Selmi, Nidhal, Reymond, Jean-Louis, Engkvist, Ola, Bjerrum, Esben Jannik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8808
container_issue 16
container_start_page 8791
container_title Journal of medicinal chemistry
container_volume 63
creator Thakkar, Amol
Selmi, Nidhal
Reymond, Jean-Louis
Engkvist, Ola
Bjerrum, Esben Jannik
description Ring systems in pharmaceuticals, agrochemicals, and dyes are ubiquitous chemical motifs. While the synthesis of common ring systems is well described and novel ring systems can be readily and computationally enumerated, the synthetic accessibility of unprecedented ring systems remains a challenge. “Ring Breaker” uses a data-driven approach to enable the prediction of ring-forming reactions, for which we have demonstrated its utility on frequently found and unprecedented ring systems, in agreement with literature syntheses. We demonstrate the performance of the neural network on a range of ring fragments from the ZINC and DrugBank databases and highlight its potential for incorporation into computer aided synthesis planning tools. These approaches to ring formation and retrosynthetic disconnection offer opportunities for chemists to explore and select more efficient syntheses/synthetic routes.
doi_str_mv 10.1021/acs.jmedchem.9b01919
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2396853961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2396853961</sourcerecordid><originalsourceid>FETCH-LOGICAL-a394t-40937103edfb3470ffcdde5f48e5bb0357de62543250cf57b14503cb3ed0ea223</originalsourceid><addsrcrecordid>eNp9kEtOwzAURS0EoqWwA4Q8ZJLy_GsbZlC-UgWIwjg4zgtNaZJiJ6DOuhDYXFeC6YchEz_JvufaPoQcMmgz4OxEG9ce55iYEebtMAYWsnCLNJniEMgeyG3SBOA84B0uGmTPuTEACMbFLmkILhTnvU6TvCzmX49Z8UrPLeo3tIv59ym9w9rqiR_VZ2nf6IXNPrCgw1lRjdBljj5YTDJTZWVBy5T6TbqsGM5chTnt-wdlxvPDqTa4T3ZSPXF4sJ4t8nx1-dS_CQb317f9s0GgRSirQEIougwEJmksZBfS1CQJqlT2UMUxCNVNsMOVFFyBSVU3ZlKBMLEHADXnokWOV71TW77X6Kooz5zByUQXWNYu4iLs9JRfmI_KVdTY0jmLaTS1Wa7tLGIQ_bqNvNto4zZau_XY0fqGOvZnf9BGpg_AKrDEy9oW_sP_d_4A1X-Kog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2396853961</pqid></control><display><type>article</type><title>“Ring Breaker”: Neural Network Driven Synthesis Prediction of the Ring System Chemical Space</title><source>MEDLINE</source><source>ACS Publications</source><creator>Thakkar, Amol ; Selmi, Nidhal ; Reymond, Jean-Louis ; Engkvist, Ola ; Bjerrum, Esben Jannik</creator><creatorcontrib>Thakkar, Amol ; Selmi, Nidhal ; Reymond, Jean-Louis ; Engkvist, Ola ; Bjerrum, Esben Jannik</creatorcontrib><description>Ring systems in pharmaceuticals, agrochemicals, and dyes are ubiquitous chemical motifs. While the synthesis of common ring systems is well described and novel ring systems can be readily and computationally enumerated, the synthetic accessibility of unprecedented ring systems remains a challenge. “Ring Breaker” uses a data-driven approach to enable the prediction of ring-forming reactions, for which we have demonstrated its utility on frequently found and unprecedented ring systems, in agreement with literature syntheses. We demonstrate the performance of the neural network on a range of ring fragments from the ZINC and DrugBank databases and highlight its potential for incorporation into computer aided synthesis planning tools. These approaches to ring formation and retrosynthetic disconnection offer opportunities for chemists to explore and select more efficient syntheses/synthetic routes.</description><identifier>ISSN: 0022-2623</identifier><identifier>EISSN: 1520-4804</identifier><identifier>DOI: 10.1021/acs.jmedchem.9b01919</identifier><identifier>PMID: 32352286</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemistry Techniques, Synthetic - methods ; Databases, Chemical ; Heterocyclic Compounds - chemical synthesis ; Hydrocarbons, Cyclic - chemical synthesis ; Neural Networks, Computer</subject><ispartof>Journal of medicinal chemistry, 2020-08, Vol.63 (16), p.8791-8808</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a394t-40937103edfb3470ffcdde5f48e5bb0357de62543250cf57b14503cb3ed0ea223</citedby><cites>FETCH-LOGICAL-a394t-40937103edfb3470ffcdde5f48e5bb0357de62543250cf57b14503cb3ed0ea223</cites><orcidid>0000-0003-4970-6461 ; 0000-0003-2724-2942 ; 0000-0003-0403-4067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jmedchem.9b01919$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jmedchem.9b01919$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32352286$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thakkar, Amol</creatorcontrib><creatorcontrib>Selmi, Nidhal</creatorcontrib><creatorcontrib>Reymond, Jean-Louis</creatorcontrib><creatorcontrib>Engkvist, Ola</creatorcontrib><creatorcontrib>Bjerrum, Esben Jannik</creatorcontrib><title>“Ring Breaker”: Neural Network Driven Synthesis Prediction of the Ring System Chemical Space</title><title>Journal of medicinal chemistry</title><addtitle>J. Med. Chem</addtitle><description>Ring systems in pharmaceuticals, agrochemicals, and dyes are ubiquitous chemical motifs. While the synthesis of common ring systems is well described and novel ring systems can be readily and computationally enumerated, the synthetic accessibility of unprecedented ring systems remains a challenge. “Ring Breaker” uses a data-driven approach to enable the prediction of ring-forming reactions, for which we have demonstrated its utility on frequently found and unprecedented ring systems, in agreement with literature syntheses. We demonstrate the performance of the neural network on a range of ring fragments from the ZINC and DrugBank databases and highlight its potential for incorporation into computer aided synthesis planning tools. These approaches to ring formation and retrosynthetic disconnection offer opportunities for chemists to explore and select more efficient syntheses/synthetic routes.</description><subject>Chemistry Techniques, Synthetic - methods</subject><subject>Databases, Chemical</subject><subject>Heterocyclic Compounds - chemical synthesis</subject><subject>Hydrocarbons, Cyclic - chemical synthesis</subject><subject>Neural Networks, Computer</subject><issn>0022-2623</issn><issn>1520-4804</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtOwzAURS0EoqWwA4Q8ZJLy_GsbZlC-UgWIwjg4zgtNaZJiJ6DOuhDYXFeC6YchEz_JvufaPoQcMmgz4OxEG9ce55iYEebtMAYWsnCLNJniEMgeyG3SBOA84B0uGmTPuTEACMbFLmkILhTnvU6TvCzmX49Z8UrPLeo3tIv59ym9w9rqiR_VZ2nf6IXNPrCgw1lRjdBljj5YTDJTZWVBy5T6TbqsGM5chTnt-wdlxvPDqTa4T3ZSPXF4sJ4t8nx1-dS_CQb317f9s0GgRSirQEIougwEJmksZBfS1CQJqlT2UMUxCNVNsMOVFFyBSVU3ZlKBMLEHADXnokWOV71TW77X6Kooz5zByUQXWNYu4iLs9JRfmI_KVdTY0jmLaTS1Wa7tLGIQ_bqNvNto4zZau_XY0fqGOvZnf9BGpg_AKrDEy9oW_sP_d_4A1X-Kog</recordid><startdate>20200827</startdate><enddate>20200827</enddate><creator>Thakkar, Amol</creator><creator>Selmi, Nidhal</creator><creator>Reymond, Jean-Louis</creator><creator>Engkvist, Ola</creator><creator>Bjerrum, Esben Jannik</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4970-6461</orcidid><orcidid>https://orcid.org/0000-0003-2724-2942</orcidid><orcidid>https://orcid.org/0000-0003-0403-4067</orcidid></search><sort><creationdate>20200827</creationdate><title>“Ring Breaker”: Neural Network Driven Synthesis Prediction of the Ring System Chemical Space</title><author>Thakkar, Amol ; Selmi, Nidhal ; Reymond, Jean-Louis ; Engkvist, Ola ; Bjerrum, Esben Jannik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a394t-40937103edfb3470ffcdde5f48e5bb0357de62543250cf57b14503cb3ed0ea223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry Techniques, Synthetic - methods</topic><topic>Databases, Chemical</topic><topic>Heterocyclic Compounds - chemical synthesis</topic><topic>Hydrocarbons, Cyclic - chemical synthesis</topic><topic>Neural Networks, Computer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thakkar, Amol</creatorcontrib><creatorcontrib>Selmi, Nidhal</creatorcontrib><creatorcontrib>Reymond, Jean-Louis</creatorcontrib><creatorcontrib>Engkvist, Ola</creatorcontrib><creatorcontrib>Bjerrum, Esben Jannik</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thakkar, Amol</au><au>Selmi, Nidhal</au><au>Reymond, Jean-Louis</au><au>Engkvist, Ola</au><au>Bjerrum, Esben Jannik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>“Ring Breaker”: Neural Network Driven Synthesis Prediction of the Ring System Chemical Space</atitle><jtitle>Journal of medicinal chemistry</jtitle><addtitle>J. Med. Chem</addtitle><date>2020-08-27</date><risdate>2020</risdate><volume>63</volume><issue>16</issue><spage>8791</spage><epage>8808</epage><pages>8791-8808</pages><issn>0022-2623</issn><eissn>1520-4804</eissn><abstract>Ring systems in pharmaceuticals, agrochemicals, and dyes are ubiquitous chemical motifs. While the synthesis of common ring systems is well described and novel ring systems can be readily and computationally enumerated, the synthetic accessibility of unprecedented ring systems remains a challenge. “Ring Breaker” uses a data-driven approach to enable the prediction of ring-forming reactions, for which we have demonstrated its utility on frequently found and unprecedented ring systems, in agreement with literature syntheses. We demonstrate the performance of the neural network on a range of ring fragments from the ZINC and DrugBank databases and highlight its potential for incorporation into computer aided synthesis planning tools. These approaches to ring formation and retrosynthetic disconnection offer opportunities for chemists to explore and select more efficient syntheses/synthetic routes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32352286</pmid><doi>10.1021/acs.jmedchem.9b01919</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4970-6461</orcidid><orcidid>https://orcid.org/0000-0003-2724-2942</orcidid><orcidid>https://orcid.org/0000-0003-0403-4067</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2623
ispartof Journal of medicinal chemistry, 2020-08, Vol.63 (16), p.8791-8808
issn 0022-2623
1520-4804
language eng
recordid cdi_proquest_miscellaneous_2396853961
source MEDLINE; ACS Publications
subjects Chemistry Techniques, Synthetic - methods
Databases, Chemical
Heterocyclic Compounds - chemical synthesis
Hydrocarbons, Cyclic - chemical synthesis
Neural Networks, Computer
title “Ring Breaker”: Neural Network Driven Synthesis Prediction of the Ring System Chemical Space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A51%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E2%80%9CRing%20Breaker%E2%80%9D:%20Neural%20Network%20Driven%20Synthesis%20Prediction%20of%20the%20Ring%20System%20Chemical%20Space&rft.jtitle=Journal%20of%20medicinal%20chemistry&rft.au=Thakkar,%20Amol&rft.date=2020-08-27&rft.volume=63&rft.issue=16&rft.spage=8791&rft.epage=8808&rft.pages=8791-8808&rft.issn=0022-2623&rft.eissn=1520-4804&rft_id=info:doi/10.1021/acs.jmedchem.9b01919&rft_dat=%3Cproquest_cross%3E2396853961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2396853961&rft_id=info:pmid/32352286&rfr_iscdi=true