“Ring Breaker”: Neural Network Driven Synthesis Prediction of the Ring System Chemical Space
Ring systems in pharmaceuticals, agrochemicals, and dyes are ubiquitous chemical motifs. While the synthesis of common ring systems is well described and novel ring systems can be readily and computationally enumerated, the synthetic accessibility of unprecedented ring systems remains a challenge. “...
Gespeichert in:
Veröffentlicht in: | Journal of medicinal chemistry 2020-08, Vol.63 (16), p.8791-8808 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8808 |
---|---|
container_issue | 16 |
container_start_page | 8791 |
container_title | Journal of medicinal chemistry |
container_volume | 63 |
creator | Thakkar, Amol Selmi, Nidhal Reymond, Jean-Louis Engkvist, Ola Bjerrum, Esben Jannik |
description | Ring systems in pharmaceuticals, agrochemicals, and dyes are ubiquitous chemical motifs. While the synthesis of common ring systems is well described and novel ring systems can be readily and computationally enumerated, the synthetic accessibility of unprecedented ring systems remains a challenge. “Ring Breaker” uses a data-driven approach to enable the prediction of ring-forming reactions, for which we have demonstrated its utility on frequently found and unprecedented ring systems, in agreement with literature syntheses. We demonstrate the performance of the neural network on a range of ring fragments from the ZINC and DrugBank databases and highlight its potential for incorporation into computer aided synthesis planning tools. These approaches to ring formation and retrosynthetic disconnection offer opportunities for chemists to explore and select more efficient syntheses/synthetic routes. |
doi_str_mv | 10.1021/acs.jmedchem.9b01919 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2396853961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2396853961</sourcerecordid><originalsourceid>FETCH-LOGICAL-a394t-40937103edfb3470ffcdde5f48e5bb0357de62543250cf57b14503cb3ed0ea223</originalsourceid><addsrcrecordid>eNp9kEtOwzAURS0EoqWwA4Q8ZJLy_GsbZlC-UgWIwjg4zgtNaZJiJ6DOuhDYXFeC6YchEz_JvufaPoQcMmgz4OxEG9ce55iYEebtMAYWsnCLNJniEMgeyG3SBOA84B0uGmTPuTEACMbFLmkILhTnvU6TvCzmX49Z8UrPLeo3tIv59ym9w9rqiR_VZ2nf6IXNPrCgw1lRjdBljj5YTDJTZWVBy5T6TbqsGM5chTnt-wdlxvPDqTa4T3ZSPXF4sJ4t8nx1-dS_CQb317f9s0GgRSirQEIougwEJmksZBfS1CQJqlT2UMUxCNVNsMOVFFyBSVU3ZlKBMLEHADXnokWOV71TW77X6Kooz5zByUQXWNYu4iLs9JRfmI_KVdTY0jmLaTS1Wa7tLGIQ_bqNvNto4zZau_XY0fqGOvZnf9BGpg_AKrDEy9oW_sP_d_4A1X-Kog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2396853961</pqid></control><display><type>article</type><title>“Ring Breaker”: Neural Network Driven Synthesis Prediction of the Ring System Chemical Space</title><source>MEDLINE</source><source>ACS Publications</source><creator>Thakkar, Amol ; Selmi, Nidhal ; Reymond, Jean-Louis ; Engkvist, Ola ; Bjerrum, Esben Jannik</creator><creatorcontrib>Thakkar, Amol ; Selmi, Nidhal ; Reymond, Jean-Louis ; Engkvist, Ola ; Bjerrum, Esben Jannik</creatorcontrib><description>Ring systems in pharmaceuticals, agrochemicals, and dyes are ubiquitous chemical motifs. While the synthesis of common ring systems is well described and novel ring systems can be readily and computationally enumerated, the synthetic accessibility of unprecedented ring systems remains a challenge. “Ring Breaker” uses a data-driven approach to enable the prediction of ring-forming reactions, for which we have demonstrated its utility on frequently found and unprecedented ring systems, in agreement with literature syntheses. We demonstrate the performance of the neural network on a range of ring fragments from the ZINC and DrugBank databases and highlight its potential for incorporation into computer aided synthesis planning tools. These approaches to ring formation and retrosynthetic disconnection offer opportunities for chemists to explore and select more efficient syntheses/synthetic routes.</description><identifier>ISSN: 0022-2623</identifier><identifier>EISSN: 1520-4804</identifier><identifier>DOI: 10.1021/acs.jmedchem.9b01919</identifier><identifier>PMID: 32352286</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemistry Techniques, Synthetic - methods ; Databases, Chemical ; Heterocyclic Compounds - chemical synthesis ; Hydrocarbons, Cyclic - chemical synthesis ; Neural Networks, Computer</subject><ispartof>Journal of medicinal chemistry, 2020-08, Vol.63 (16), p.8791-8808</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a394t-40937103edfb3470ffcdde5f48e5bb0357de62543250cf57b14503cb3ed0ea223</citedby><cites>FETCH-LOGICAL-a394t-40937103edfb3470ffcdde5f48e5bb0357de62543250cf57b14503cb3ed0ea223</cites><orcidid>0000-0003-4970-6461 ; 0000-0003-2724-2942 ; 0000-0003-0403-4067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jmedchem.9b01919$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jmedchem.9b01919$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32352286$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thakkar, Amol</creatorcontrib><creatorcontrib>Selmi, Nidhal</creatorcontrib><creatorcontrib>Reymond, Jean-Louis</creatorcontrib><creatorcontrib>Engkvist, Ola</creatorcontrib><creatorcontrib>Bjerrum, Esben Jannik</creatorcontrib><title>“Ring Breaker”: Neural Network Driven Synthesis Prediction of the Ring System Chemical Space</title><title>Journal of medicinal chemistry</title><addtitle>J. Med. Chem</addtitle><description>Ring systems in pharmaceuticals, agrochemicals, and dyes are ubiquitous chemical motifs. While the synthesis of common ring systems is well described and novel ring systems can be readily and computationally enumerated, the synthetic accessibility of unprecedented ring systems remains a challenge. “Ring Breaker” uses a data-driven approach to enable the prediction of ring-forming reactions, for which we have demonstrated its utility on frequently found and unprecedented ring systems, in agreement with literature syntheses. We demonstrate the performance of the neural network on a range of ring fragments from the ZINC and DrugBank databases and highlight its potential for incorporation into computer aided synthesis planning tools. These approaches to ring formation and retrosynthetic disconnection offer opportunities for chemists to explore and select more efficient syntheses/synthetic routes.</description><subject>Chemistry Techniques, Synthetic - methods</subject><subject>Databases, Chemical</subject><subject>Heterocyclic Compounds - chemical synthesis</subject><subject>Hydrocarbons, Cyclic - chemical synthesis</subject><subject>Neural Networks, Computer</subject><issn>0022-2623</issn><issn>1520-4804</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtOwzAURS0EoqWwA4Q8ZJLy_GsbZlC-UgWIwjg4zgtNaZJiJ6DOuhDYXFeC6YchEz_JvufaPoQcMmgz4OxEG9ce55iYEebtMAYWsnCLNJniEMgeyG3SBOA84B0uGmTPuTEACMbFLmkILhTnvU6TvCzmX49Z8UrPLeo3tIv59ym9w9rqiR_VZ2nf6IXNPrCgw1lRjdBljj5YTDJTZWVBy5T6TbqsGM5chTnt-wdlxvPDqTa4T3ZSPXF4sJ4t8nx1-dS_CQb317f9s0GgRSirQEIougwEJmksZBfS1CQJqlT2UMUxCNVNsMOVFFyBSVU3ZlKBMLEHADXnokWOV71TW77X6Kooz5zByUQXWNYu4iLs9JRfmI_KVdTY0jmLaTS1Wa7tLGIQ_bqNvNto4zZau_XY0fqGOvZnf9BGpg_AKrDEy9oW_sP_d_4A1X-Kog</recordid><startdate>20200827</startdate><enddate>20200827</enddate><creator>Thakkar, Amol</creator><creator>Selmi, Nidhal</creator><creator>Reymond, Jean-Louis</creator><creator>Engkvist, Ola</creator><creator>Bjerrum, Esben Jannik</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4970-6461</orcidid><orcidid>https://orcid.org/0000-0003-2724-2942</orcidid><orcidid>https://orcid.org/0000-0003-0403-4067</orcidid></search><sort><creationdate>20200827</creationdate><title>“Ring Breaker”: Neural Network Driven Synthesis Prediction of the Ring System Chemical Space</title><author>Thakkar, Amol ; Selmi, Nidhal ; Reymond, Jean-Louis ; Engkvist, Ola ; Bjerrum, Esben Jannik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a394t-40937103edfb3470ffcdde5f48e5bb0357de62543250cf57b14503cb3ed0ea223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry Techniques, Synthetic - methods</topic><topic>Databases, Chemical</topic><topic>Heterocyclic Compounds - chemical synthesis</topic><topic>Hydrocarbons, Cyclic - chemical synthesis</topic><topic>Neural Networks, Computer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thakkar, Amol</creatorcontrib><creatorcontrib>Selmi, Nidhal</creatorcontrib><creatorcontrib>Reymond, Jean-Louis</creatorcontrib><creatorcontrib>Engkvist, Ola</creatorcontrib><creatorcontrib>Bjerrum, Esben Jannik</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thakkar, Amol</au><au>Selmi, Nidhal</au><au>Reymond, Jean-Louis</au><au>Engkvist, Ola</au><au>Bjerrum, Esben Jannik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>“Ring Breaker”: Neural Network Driven Synthesis Prediction of the Ring System Chemical Space</atitle><jtitle>Journal of medicinal chemistry</jtitle><addtitle>J. Med. Chem</addtitle><date>2020-08-27</date><risdate>2020</risdate><volume>63</volume><issue>16</issue><spage>8791</spage><epage>8808</epage><pages>8791-8808</pages><issn>0022-2623</issn><eissn>1520-4804</eissn><abstract>Ring systems in pharmaceuticals, agrochemicals, and dyes are ubiquitous chemical motifs. While the synthesis of common ring systems is well described and novel ring systems can be readily and computationally enumerated, the synthetic accessibility of unprecedented ring systems remains a challenge. “Ring Breaker” uses a data-driven approach to enable the prediction of ring-forming reactions, for which we have demonstrated its utility on frequently found and unprecedented ring systems, in agreement with literature syntheses. We demonstrate the performance of the neural network on a range of ring fragments from the ZINC and DrugBank databases and highlight its potential for incorporation into computer aided synthesis planning tools. These approaches to ring formation and retrosynthetic disconnection offer opportunities for chemists to explore and select more efficient syntheses/synthetic routes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32352286</pmid><doi>10.1021/acs.jmedchem.9b01919</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4970-6461</orcidid><orcidid>https://orcid.org/0000-0003-2724-2942</orcidid><orcidid>https://orcid.org/0000-0003-0403-4067</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2623 |
ispartof | Journal of medicinal chemistry, 2020-08, Vol.63 (16), p.8791-8808 |
issn | 0022-2623 1520-4804 |
language | eng |
recordid | cdi_proquest_miscellaneous_2396853961 |
source | MEDLINE; ACS Publications |
subjects | Chemistry Techniques, Synthetic - methods Databases, Chemical Heterocyclic Compounds - chemical synthesis Hydrocarbons, Cyclic - chemical synthesis Neural Networks, Computer |
title | “Ring Breaker”: Neural Network Driven Synthesis Prediction of the Ring System Chemical Space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A51%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E2%80%9CRing%20Breaker%E2%80%9D:%20Neural%20Network%20Driven%20Synthesis%20Prediction%20of%20the%20Ring%20System%20Chemical%20Space&rft.jtitle=Journal%20of%20medicinal%20chemistry&rft.au=Thakkar,%20Amol&rft.date=2020-08-27&rft.volume=63&rft.issue=16&rft.spage=8791&rft.epage=8808&rft.pages=8791-8808&rft.issn=0022-2623&rft.eissn=1520-4804&rft_id=info:doi/10.1021/acs.jmedchem.9b01919&rft_dat=%3Cproquest_cross%3E2396853961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2396853961&rft_id=info:pmid/32352286&rfr_iscdi=true |