Fast Magneto-Ionic Switching of Interface Anisotropy Using Yttria-Stabilized Zirconia Gate Oxide

Voltage control of interfacial magnetism has been greatly highlighted in spintronics research for many years, as it might enable ultralow power technologies. Among a few suggested approaches, magneto-ionic control of magnetism has demonstrated large modulation of magnetic anisotropy. Moreover, the r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2020-05, Vol.20 (5), p.3435-3441
Hauptverfasser: Lee, Ki-Young, Jo, Sujin, Tan, Aik Jun, Huang, Mantao, Choi, Dongwon, Park, Jung Hoon, Ji, Ho-Il, Son, Ji-Won, Chang, Joonyeon, Beach, Geoffrey S. D, Woo, Seonghoon
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3441
container_issue 5
container_start_page 3435
container_title Nano letters
container_volume 20
creator Lee, Ki-Young
Jo, Sujin
Tan, Aik Jun
Huang, Mantao
Choi, Dongwon
Park, Jung Hoon
Ji, Ho-Il
Son, Ji-Won
Chang, Joonyeon
Beach, Geoffrey S. D
Woo, Seonghoon
description Voltage control of interfacial magnetism has been greatly highlighted in spintronics research for many years, as it might enable ultralow power technologies. Among a few suggested approaches, magneto-ionic control of magnetism has demonstrated large modulation of magnetic anisotropy. Moreover, the recent demonstration of magneto-ionic devices using hydrogen ions presented relatively fast magnetization toggle switching, t sw ∼ 100 ms, at room temperature. However, the operation speed may need to be significantly improved to be used for modern electronic devices. Here, we demonstrate that the speed of proton-induced magnetization toggle switching largely depends on proton-conducting oxides. We achieve ∼1 ms reliable (>103 cycles) switching using yttria-stabilized zirconia (YSZ), which is ∼100 times faster than the state-of-the-art magneto-ionic devices reported to date at room temperature. Our results suggest that further engineering of the proton-conducting materials could bring substantial improvement that may enable new low-power computing scheme based on magneto-ionics.
doi_str_mv 10.1021/acs.nanolett.0c00340
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2396305537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2396305537</sourcerecordid><originalsourceid>FETCH-LOGICAL-a460t-3cc15f5b050feeeeb37f6015b5baafd42159a76595ae9cb813509aacf111ad123</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0E4lH4A4S8ZJMyjuM0WSJEoVJRF6UL2ISJYxej1C62Ix5fT6oWlsxmRpp772gOIecMhgxSdoUyDC1a16oYhyABeAZ75JgJDklelun-31xkR-QkhDcAKLmAQ3LEU55xURTH5GWMIdIHXFoVXTJx1kg6_zBRvhq7pE7TiY3Ka5SKXlsTXPRu_UUXYbN9itEbTOYRa9Oab9XQZ-NlH4H0DqOis0_TqFNyoLEN6mzXB2Qxvn28uU-ms7vJzfU0wSyHmHApmdCiBgFa9VXzkc6BiVrUiLrJUiZKHOWiFKhKWResf6RElJoxhg1L-YBcbnPX3r13KsRqZYJUbYtWuS5UKS9zDkLwUS_NtlLpXQhe6WrtzQr9V8Wg2rCterbVL9tqx7a3XewudPVKNX-mX5i9ALaCjf3Ndd72D_-f-QPCw4o9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2396305537</pqid></control><display><type>article</type><title>Fast Magneto-Ionic Switching of Interface Anisotropy Using Yttria-Stabilized Zirconia Gate Oxide</title><source>American Chemical Society Publications</source><creator>Lee, Ki-Young ; Jo, Sujin ; Tan, Aik Jun ; Huang, Mantao ; Choi, Dongwon ; Park, Jung Hoon ; Ji, Ho-Il ; Son, Ji-Won ; Chang, Joonyeon ; Beach, Geoffrey S. D ; Woo, Seonghoon</creator><creatorcontrib>Lee, Ki-Young ; Jo, Sujin ; Tan, Aik Jun ; Huang, Mantao ; Choi, Dongwon ; Park, Jung Hoon ; Ji, Ho-Il ; Son, Ji-Won ; Chang, Joonyeon ; Beach, Geoffrey S. D ; Woo, Seonghoon</creatorcontrib><description>Voltage control of interfacial magnetism has been greatly highlighted in spintronics research for many years, as it might enable ultralow power technologies. Among a few suggested approaches, magneto-ionic control of magnetism has demonstrated large modulation of magnetic anisotropy. Moreover, the recent demonstration of magneto-ionic devices using hydrogen ions presented relatively fast magnetization toggle switching, t sw ∼ 100 ms, at room temperature. However, the operation speed may need to be significantly improved to be used for modern electronic devices. Here, we demonstrate that the speed of proton-induced magnetization toggle switching largely depends on proton-conducting oxides. We achieve ∼1 ms reliable (&gt;103 cycles) switching using yttria-stabilized zirconia (YSZ), which is ∼100 times faster than the state-of-the-art magneto-ionic devices reported to date at room temperature. Our results suggest that further engineering of the proton-conducting materials could bring substantial improvement that may enable new low-power computing scheme based on magneto-ionics.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.0c00340</identifier><identifier>PMID: 32343588</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2020-05, Vol.20 (5), p.3435-3441</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a460t-3cc15f5b050feeeeb37f6015b5baafd42159a76595ae9cb813509aacf111ad123</citedby><cites>FETCH-LOGICAL-a460t-3cc15f5b050feeeeb37f6015b5baafd42159a76595ae9cb813509aacf111ad123</cites><orcidid>0000-0002-9327-2026 ; 0000-0001-8879-1203 ; 0000-0002-6194-991X ; 0000-0002-5310-0633 ; 0000-0002-2076-5321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.0c00340$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.0c00340$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32343588$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Ki-Young</creatorcontrib><creatorcontrib>Jo, Sujin</creatorcontrib><creatorcontrib>Tan, Aik Jun</creatorcontrib><creatorcontrib>Huang, Mantao</creatorcontrib><creatorcontrib>Choi, Dongwon</creatorcontrib><creatorcontrib>Park, Jung Hoon</creatorcontrib><creatorcontrib>Ji, Ho-Il</creatorcontrib><creatorcontrib>Son, Ji-Won</creatorcontrib><creatorcontrib>Chang, Joonyeon</creatorcontrib><creatorcontrib>Beach, Geoffrey S. D</creatorcontrib><creatorcontrib>Woo, Seonghoon</creatorcontrib><title>Fast Magneto-Ionic Switching of Interface Anisotropy Using Yttria-Stabilized Zirconia Gate Oxide</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Voltage control of interfacial magnetism has been greatly highlighted in spintronics research for many years, as it might enable ultralow power technologies. Among a few suggested approaches, magneto-ionic control of magnetism has demonstrated large modulation of magnetic anisotropy. Moreover, the recent demonstration of magneto-ionic devices using hydrogen ions presented relatively fast magnetization toggle switching, t sw ∼ 100 ms, at room temperature. However, the operation speed may need to be significantly improved to be used for modern electronic devices. Here, we demonstrate that the speed of proton-induced magnetization toggle switching largely depends on proton-conducting oxides. We achieve ∼1 ms reliable (&gt;103 cycles) switching using yttria-stabilized zirconia (YSZ), which is ∼100 times faster than the state-of-the-art magneto-ionic devices reported to date at room temperature. Our results suggest that further engineering of the proton-conducting materials could bring substantial improvement that may enable new low-power computing scheme based on magneto-ionics.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0E4lH4A4S8ZJMyjuM0WSJEoVJRF6UL2ISJYxej1C62Ix5fT6oWlsxmRpp772gOIecMhgxSdoUyDC1a16oYhyABeAZ75JgJDklelun-31xkR-QkhDcAKLmAQ3LEU55xURTH5GWMIdIHXFoVXTJx1kg6_zBRvhq7pE7TiY3Ka5SKXlsTXPRu_UUXYbN9itEbTOYRa9Oab9XQZ-NlH4H0DqOis0_TqFNyoLEN6mzXB2Qxvn28uU-ms7vJzfU0wSyHmHApmdCiBgFa9VXzkc6BiVrUiLrJUiZKHOWiFKhKWResf6RElJoxhg1L-YBcbnPX3r13KsRqZYJUbYtWuS5UKS9zDkLwUS_NtlLpXQhe6WrtzQr9V8Wg2rCterbVL9tqx7a3XewudPVKNX-mX5i9ALaCjf3Ndd72D_-f-QPCw4o9</recordid><startdate>20200513</startdate><enddate>20200513</enddate><creator>Lee, Ki-Young</creator><creator>Jo, Sujin</creator><creator>Tan, Aik Jun</creator><creator>Huang, Mantao</creator><creator>Choi, Dongwon</creator><creator>Park, Jung Hoon</creator><creator>Ji, Ho-Il</creator><creator>Son, Ji-Won</creator><creator>Chang, Joonyeon</creator><creator>Beach, Geoffrey S. D</creator><creator>Woo, Seonghoon</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9327-2026</orcidid><orcidid>https://orcid.org/0000-0001-8879-1203</orcidid><orcidid>https://orcid.org/0000-0002-6194-991X</orcidid><orcidid>https://orcid.org/0000-0002-5310-0633</orcidid><orcidid>https://orcid.org/0000-0002-2076-5321</orcidid></search><sort><creationdate>20200513</creationdate><title>Fast Magneto-Ionic Switching of Interface Anisotropy Using Yttria-Stabilized Zirconia Gate Oxide</title><author>Lee, Ki-Young ; Jo, Sujin ; Tan, Aik Jun ; Huang, Mantao ; Choi, Dongwon ; Park, Jung Hoon ; Ji, Ho-Il ; Son, Ji-Won ; Chang, Joonyeon ; Beach, Geoffrey S. D ; Woo, Seonghoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a460t-3cc15f5b050feeeeb37f6015b5baafd42159a76595ae9cb813509aacf111ad123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Ki-Young</creatorcontrib><creatorcontrib>Jo, Sujin</creatorcontrib><creatorcontrib>Tan, Aik Jun</creatorcontrib><creatorcontrib>Huang, Mantao</creatorcontrib><creatorcontrib>Choi, Dongwon</creatorcontrib><creatorcontrib>Park, Jung Hoon</creatorcontrib><creatorcontrib>Ji, Ho-Il</creatorcontrib><creatorcontrib>Son, Ji-Won</creatorcontrib><creatorcontrib>Chang, Joonyeon</creatorcontrib><creatorcontrib>Beach, Geoffrey S. D</creatorcontrib><creatorcontrib>Woo, Seonghoon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Ki-Young</au><au>Jo, Sujin</au><au>Tan, Aik Jun</au><au>Huang, Mantao</au><au>Choi, Dongwon</au><au>Park, Jung Hoon</au><au>Ji, Ho-Il</au><au>Son, Ji-Won</au><au>Chang, Joonyeon</au><au>Beach, Geoffrey S. D</au><au>Woo, Seonghoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Magneto-Ionic Switching of Interface Anisotropy Using Yttria-Stabilized Zirconia Gate Oxide</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2020-05-13</date><risdate>2020</risdate><volume>20</volume><issue>5</issue><spage>3435</spage><epage>3441</epage><pages>3435-3441</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Voltage control of interfacial magnetism has been greatly highlighted in spintronics research for many years, as it might enable ultralow power technologies. Among a few suggested approaches, magneto-ionic control of magnetism has demonstrated large modulation of magnetic anisotropy. Moreover, the recent demonstration of magneto-ionic devices using hydrogen ions presented relatively fast magnetization toggle switching, t sw ∼ 100 ms, at room temperature. However, the operation speed may need to be significantly improved to be used for modern electronic devices. Here, we demonstrate that the speed of proton-induced magnetization toggle switching largely depends on proton-conducting oxides. We achieve ∼1 ms reliable (&gt;103 cycles) switching using yttria-stabilized zirconia (YSZ), which is ∼100 times faster than the state-of-the-art magneto-ionic devices reported to date at room temperature. Our results suggest that further engineering of the proton-conducting materials could bring substantial improvement that may enable new low-power computing scheme based on magneto-ionics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32343588</pmid><doi>10.1021/acs.nanolett.0c00340</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9327-2026</orcidid><orcidid>https://orcid.org/0000-0001-8879-1203</orcidid><orcidid>https://orcid.org/0000-0002-6194-991X</orcidid><orcidid>https://orcid.org/0000-0002-5310-0633</orcidid><orcidid>https://orcid.org/0000-0002-2076-5321</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2020-05, Vol.20 (5), p.3435-3441
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_2396305537
source American Chemical Society Publications
title Fast Magneto-Ionic Switching of Interface Anisotropy Using Yttria-Stabilized Zirconia Gate Oxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A06%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Magneto-Ionic%20Switching%20of%20Interface%20Anisotropy%20Using%20Yttria-Stabilized%20Zirconia%20Gate%20Oxide&rft.jtitle=Nano%20letters&rft.au=Lee,%20Ki-Young&rft.date=2020-05-13&rft.volume=20&rft.issue=5&rft.spage=3435&rft.epage=3441&rft.pages=3435-3441&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.0c00340&rft_dat=%3Cproquest_cross%3E2396305537%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2396305537&rft_id=info:pmid/32343588&rfr_iscdi=true